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Stuck in the age of fossil fuels

e 2019 emissions 12% higher than in 2010 and 54% higher
than 1n 1990

 Emissions growth slowed
* Decarbonisation of energy is progressing far too slow
Global net anthropogenic emissions have continued to rise across all major groups of greenhouse gases.
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INCREASED EVIDENCE OF CLIMATE
ACTION

The unit costs of some forms of renewable energy and of batteries for passenger EVs have fallen,
and their use continues to rise.

Concentrating Batteries for passenger
Photovoltaics (PV) Onshore wind Offshore wind solar power (CSP) electric vehicles (EVs)
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NDCs are insufficient to keep 1.5°C
well within reach

Projected global GHG emissions from NDCs announced prior to COP26 would make it likely that
warming will exceed 1.5°C and also make it harder after 2030 to limit warming to below 2°C.

a. Global GHG emissions b. 2030
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End-use interventions can reduce
GHG emissions by 40-70% in 2050

Demand-side mitigation can be achieved through changes in socio-cultural factors, infrastructure
design and use, and end-use technology adoption by 2050.

c. Electricity: indicative impacts

a. Nutrition b. Manufactured products, mobility, shelter of change in service demand
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Creutzig et al, Nature Climate Change 2022 adoption

and Chapter 5, IPCC 2022
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Accounting framework: system level effects
dominate but are highly uncertain

.\\ Iy : -

\

\ SYSTEM-LEVEL 1,
b IMPACTS /
Increasing precision in GHG Increasing, &ffect on
emissions estimates GHG emissions

\
/
\ /
\ /
\ / Rebound

‘ IMMEDIATE APPLICATION / ects
\ IMPACTS
\ \ Optlm ation ndsub /
Lock-in and /
path dependency ]
/ ‘I’mn mm/

ooooooooooo
and educatlon

s

COMPUTE-
& RELATED IMPACTS
Consumer / i
behavior
Energy y
N Ot s
N 1)) [P

£
O
Z
=
m
e
il
5®
i
z
(7]
o>
4
(%)
=]
3 5
=
!
d

_______________

Kaack, Creutzig et al (2022) Nature Climate Change




Felix Creutzig




Energy demand of data center is huge — 1% of
global electricity consumption -and growing but
efficiency gains mostly compensate

Trends in global data center energy-use drivers
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Al contribution can be high (training) but overall
energy demand unknown

ICT sector
(~1.4%)

Other
sectors
Kaack, Creutzig et
al (2022) Nature
Climate Change
Global GHG
emissions

M Al-related
M Operational

M Other ICT | # Embodied -
and other

Large data Distributed
ICT sector centres compute
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IPCC for the first time assesses potential
and risks of digital technologies to climate
change mitigation

Nl Cities
LR Buildings

Climate Change 2022 Mobility
Mitigation of Climate Change Agriculture

Chapter 16,
WGIII, IPCC
(2022)




Digitalisation, if steered by standards and
pricing, offers new opportunities for GHG
emission savin
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Shared urban mobility systems:
occupancy is key
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Single occupant Two occupants Fouroccupants  mmm Bus-ICE Metro/ urban train

« Smaller vehicles better than larger ones

« Lifetime of e-scooters matters

* Private bike better than shared bike

» Private motorized transport better than public transport with 4 passengers

* Ridesourcing (Uber) unacceptable choice due to deadheading (=cruising of vehicles in
search for passengers)




Electricity systems

[ new infrastructure (unsustainable)

[l rew infrastructure (sustainable)

Forecasting supply Detecting methane leaks .
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Charge scheduling
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Societal Adaptation

Crisis A ™ socil

readiness systems
surveying resilient livelinoods
epidemic risk
é . e i responding  Public health
enabling annotating ! monitoring  predicting to food
diagnoses disaster maps  delivering alerts food supply food demand  insecurity

Societal adaptation




Electricity systems
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Key roles of Al:

. Distilling raw data into actionable information
. Approximating time-intensive simulations

. Improving predictions

1
2
3
4. Accelerating scientific discovery
5. Optimizing complex systems

6

. Supporting (urban) climate governance

Freight
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Vehicle efficiency
Designing for efficiency
Detecting loading inefficiency
3-D printing

Autonomous vehicles
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Societal Adaptation
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disaster maps ~ delivering alerts
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Deep dive: The role of
Al in urban governance
and solutions




REMOTE S : LANDSAT, ASTER

Q=

Big d ' b
: ig data in urban
E [ANDSAT
LIDAR systems n
become popular
sciences
6:{ 1 --Eirst iPad
First mobile phone First iPhone
G(f,i?f‘l_’iﬁ'lﬁif-_?fﬂ?fi._f_; _______ N— - Evolution of key “Big Data” sources
L pe——— and technologies and the rise of
- = Social Media Data (SMD).
m OpenNY E.0.95
PUBLIC OPEN DATA BRI . . . .
B e * Increasing availability of
b census Bureau {4 g location-based social, infrastructural,
CENDATA online ), 5a Spatl . .
UNSPRE U5 Open Govt and landscape/biophysical data.
directive Directive . .
 SMD represents major new phase in
WIFI & CELLULAR ey .
RADIO TECHNOLOGY ability to understand links between
human behavior, values, and
@i i preferences and infrastructural
First version of the N . ’
802.1 protocol 2 Nbit/s snepcha climatological, or other core
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i ‘Open Street Map
#YouTube
i Ilieva and McPhearson (2018)
[ oo Nature Sustainability
Picasa
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Creutzig et al (2019a)
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Densification

Consolidation
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Porto: scenarios

* Design scenarios with
10% additional
residential space

 Apply ANN on new

scenarios

* Predict change in
energy use

 Marginally it 1s best to
compactify, larger

changes go along well
with ToD
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High-resolution AI methods can support
urban planning — as demonstrated in
evaluating new settlements in Berlin

average
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-14.0

w/
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Nachtigall, Creutzig et al, in preparation

®




Causal Shap Value [km]

Causal Shap Value [km]

Identifying urban form causal influence at
neighborhoodlevel across cities

Distance to Center

Distance to Employment

Wagner,
Creutzig et
al, in
prepration
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Joint governance of data, Al and physical
infrastructure

Use digitalization to optimize public Sustainable urban
transit. Contactless payment and planning. Use big
time-specific ticketing to optimize data and machine
g capacity consistent with physical learning tools to
3 distancing. optimize transport
§ - an(.i urban planning.
2 g « Ready to go Build up urban data
o© Telework. Confinement * Institutional i
HE dramatically increased alignment || ||| ) .
'T_U telework levels and — E 1234516789015 ‘ | —
e demand for ' * Vision
o0 videoconferencing tools. * Political
o stamina
g Desolation. High level of Consolidation. PUI
= confinement emptied made perr:nanent and
g streets, especially in cities safe. Contlnu9us
far with high exposure to network provided.
g COVID-19, such as
e Wuhan, Milan, and New * Ready to go ¢ Vision
£ York. * Institutional * Political
5 alignment stamina
v
_é‘ PUI. Municipalities providing pop-up
o infrastructure to incentivize more
walking and cycling.

Confinement Smart physical distancing Post-COVID-19

Creutzig et al, ERIS (2022)
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Planetary stability: Accelerating
forces trump efficiency gains

* Digitalization force of
oreat acceleration

 Enables both
accelerated resource
consumption and
accelerated efficiency
deployment

 Ressource demand
long-tailed:
proportional shift
from few fossils to
many minerals

Rapid integration of renewable energy
Vehicle-to-grid technologies
Shared pooled mobility

Energy use in data centers
Al use for o1l field exploration
Unlimited deployment of autonomous
vehicles




Digitalization, society and planetary
stability

digitalization

Relevant direct and indirect
environmental footprints,
fueling the great
acceleration, but substantial
potentials for environmental
impact reduction if directed

\

Equity Planetary stability Political agency

In some cases equalization force, but
structurally increasing income
inequality within and between
countries

As realized in social networks:
Modifies communication patterns,
hinders deliberations, and advances
polarization

—

Inequality drives positional good
consumption and hinders political
processes that protect planetary
stability

—

Polarized societies find insufficient
common ground to advance policies
for the public good

Creutzig et al, Digitalization and the Anthropocene, Ann. Rev. Env. Res. 2022




In balance, digitalization increases
inequality

Global National

More opportunities for developing « Results in polarization of income,

countries to contribute to global L : :
markets in the service sector (flat substituting middle-class jobs

world)

 ICT-based rationalizations substitute Supply Slde
for labor-intensive processes and thus
erode the competitive advantage of Mining operations servicing the ICT
developing countries (74% of all robot .SGCtOI' are as.8001ated with fO.I'CBd labqr,
installations in USA, China, Germany} lnChldlng child labor, €xcesslive Worklng
South Korea, Japan) hours, low wages, lack of social

protection, discrimination against
migrant workers, humiliating disciplinary
actions and (sexual) violence

Consumption

 In developed world 87% have access to
Iinternet, in developing world 19%

Creutzig et al, Digitalization and the Anthropocene, Ann. Rev. Env. Res. 2022




Political agency: substantial potential but

economics of attention and emotion
destabilize democracies

i Influences political
i ) digital agency

Collect more data and
refine algorithms

Provides
services

Monopolistic Political
User = y
data platforms Opinion
Provides
' Data ’

control

Creutzig et al, Digitalization and the Anthropocene, Ann. Rev. Env. Res. 2022




A structural equation model applied on
nation-level data demonstrates that
impartial governance fosters social

capital and thus climate policies

Pesnsas| Mu(elo
}
9O*** 1

0.001**
:
i Carbon
e e G e I e

\\ Standard of
0.88"* | Living (GNI per |-
capit

a)

Creutzig et al. 2023 Global Environmental Change




Design of climate policies can
contribute to a virtuous cycle

Impartial and progressive

Partial and regressive

Creutzig et al. 2023 Global Environmental Change




Three pathways of digitalization in
the Anthropocene

Induced consumption
80 - \

Acceleration of innovation and

technology development by Al \ 1 |
1 < - = - .
40 / -— {B) i 6

l &N

l Systemic efficiency gains and reduced ressource

1 Planetary destabilization 5 ) Slanet
emocracy an . anetary
(current pathway) political agency ~ EAUity stability

Deliberate for the Good

consumption as enabled by directed digitalization

4=

o
Beo~
(O Be
Be~

Green but inhumane

+

Bes
(".Oll'

Global greenhouse gas emissions (Gt)

L ®
qﬂ-@-‘-

2000 2020 2040 2060 2080 2100

year

Creutzig et al, Digitalization and the Anthropocene, Ann. Rev. Env. Res. 2022




Key leverage points

/ Apply to smart conscious \

sustainable cities: MINGEETS
- Participatory data 1
GOALS ( A \
governance 1 e i

- Big data tools STRUCTURES [ roumminesim | swtofionby domul trmaon
. aspiration t flows and identities
- Conscious of planetary INFORMATION FLOW. e

commons

eng |
stabilit j REEES , A .‘
K y FEEDBACK | Epistemic web to support \

holistic Earth system
L understanding
li Data sharing mandates, ll ﬂ
circularity requirements,
societies
Summary:

» Digitalization part of planetary dynamics of the Anthropocene, via
environmental, social and political channels (co-evolution)

» Set appropriate goals, developing balanced epistemic web, and apply
new rules via public policy




Three-tiered architecture of Al for
climate change mitigation

Avoid run-away consumption pathways
Governance Direct improved energy technologies
Direct enabling tools to shift & accelerate mitigation

Implement efficient energy end use technologies,
Pathways such as shared mobility systems, highly accessible
cities, and renewable energy grid integration

Develop Al-based tools for agile climate governance,
low-carbon urban planning that accelerate energy
conversation and climate mitigation efforts




Are the Al and climate issues
connected?

* Policy-wise: NO

— Climate: carbon tax,  socialtrustneeded [~ Y section 230 to
. to implement maintain
phase out fossils, etc. solution| 4 social trust
— Al: Section 230, DMA, Stable climate
to maintain
social stability
etc '
-

Al can technically support
climate solutions

* Conceptually: YES
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Avoid
Mitigation potential (tCOzeq/cap)

Live car-free -

One less flight {long return) —

One less flight |
(medium return)

L

Less car transport
Less transport by air -
No pets

Telecommuting

Less living space/ |
co-housing

Food waste reduction

Fuel efficient driving -

AT IT

Less packaging

Hot water saving =
Less animal products -
Food sufficiency =

Lower room temperature -
Less processed food
falcohol

Fewer purchases/ |

durable items

Less textiles

Less energy use (clothing) -
Fewer appliances

Bio-plastics/Less plastic -

Less paper

.

SEEE T

Shift
Mitigation potential (tCOzeq/cap)

Renewable electricity
Refurbishment & renovation

Heat pump

Improved cooking
equipment

Renewable-based heating

Passive house

Improve
Mitigation potential (tCO2eq/cap)

Produce

electricity 7

Shift to PHEV/HEV
Produce own food

Shift to a smaller car
Better thermal insulation
Smart metering

More efficient appliances
Energy & material efficiency
Better use of appliances
Food waste management
Low-carbon construction
Recycled materials
Green roofs

Recycle

1

o

&

L
e
X
X
®
DK
K
K

Shift to public transport

Vegan diet -

Sustainable diet _|
(unspecified)

Vegetarian diet

Shift to lower carbon meats
Organic food

Shift to active transport -
Mediterranean and similar -
Regionalflocal food
Car-pooling/sharing -
Service/sharing economy -
Eat out eco-friendly -
Nutrition guidelines diet <

Seasonal/ fresh food

Partial shift to
dairy/plants/fish

Walk instead of bus -

Shift to BEV

Shift to FCV
o

> mean

o Estimates

Minimum
(Q1-IQRx1.5)

25th Percentile 75th Percentile
)

Median

Maximum
(Q3+1QRx1.5)

Interquartile range
(IQR)

Consumption options
categorized into
avoid-shift-improve,
with major potential
in mobility

Based on Ivanova et al
2020; figure design by Max
Callaghan




Al governance for climate change
mitigation: the urban example

Make use of agile Al-based urban planning systems to:

* Avoid high energy consumption induced by inefficient urban
planning and urban sprawl

* Improve energy efficient mobility services and housing use to
reduce GHG emissions

» Shift and accelerate mitigation pathways by accelerating planning
processes and rapidly adapt (street) infrastructures

— 80 Induced consum, ption
= 5
3 IN
] 1 1 Planetary destabilization b ; Planet
e Acceleration of innovation and current pathwa emocrac y an Equity anstary,
8 technology development by Al ( p y) political agency stability
£ | I
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In particular by sharing material

stock and vehicles

More intense use [CO2e] 1

Bikesharing [CO2e]

Car-sharing [Energy]

Car-sharing [Activity] 1

Car-sharing [CO2e] A

Ridesharing [Energy]

Ridesharing [CO2e]

P2P second hand trading [Activity]

P2P second hand trading [CO2e] A

P2P sharing mobility [CO2e] 1

Material Substitution [CO2e]

Reuse [CO2e]

Recycling [CO2e] A

Remanufacturing [CO2e] 4

Obs. Pub.
1 i1
4 3
2 1
4 4
8 6
1  §
8 4
1 3
2. 2
4 4
2. 2
28 13
5 4
1 1

—-100% -80% -60% —-40% -20% 0%

20%

(occupancy)

Metro/urban rail

Shared bike B ICE
us - - average occupanc
Private bike 8 PRngY
Ridesourcing - car - FCEV B One occupant
Ridesourcing - car - BEV (two packs) I wo
H Three
Ridesourcing - car - BEV
Four
25 Ridesourcing - car - PHEV W Five
Ridesourcing - car - HEV
Ridesourcing - car - ICE
20 Taxi - FCEV
o Taxi BEV (two packs)
o
158 Taxi BEV
< ;
g Taxi PHEV
)
2 Taxi HEV
10 Private car - FCEV -
Private car - BEV
5 Private car - PHEV
Private car - HEV
Private car - ICE
0
50 100 150 200 250

GHG emissions (g CO2e) per passenger-km

Synthesis by Nico Heeren, Eric
Masanet and Alessandro Sanchez
Pereira; right panel based on ITF, 2020
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