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Learning on structured data
Hu et al (2020) Morris et al (2020) Dwivedi et al (2022)
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Problems in graph learning

Neural methods achieve
remarkable results in graph
learning

– molecule synthesis and prediction
– modeling of human social

behavior
– ...

but come with

– significant resource demands
– too much complexity to be

interpretable
– which hinders application in many

scenarios
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Vectorial graph representations
that

– yield semantically and structurally
meaningful distances

– are interpretable
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The problem with vectorial graph representations

We want our graph representation function ϕ to be

• permutation-invariant
for all isomorphic graphs

G ≃ H : ϕ(G) = ϕ(H)

• complete
for all non-isomorphic graphs

G ̸≃ H : ϕ(G) ̸= ϕ(H)

G Rd
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Why do we care?

Graph
Structured

Data

Vectorial
Representation

Solve Your
Learning Task

• Unfortunately computing any
permutation invariant and
complete embedding (or kernel)
is as hard as deciding graph
isomorphism
• Typical solution: drop

completeness for efficiency
– most practical graph kernels,

GNNs, Weisfeiler Leman test, . . .
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Message Passing and the Weisfeiler Leman Algorithm
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Message Passing
• Let’s assume that we have some feature

representation r0 : V(G)→ Rd for the vertices
in our graph

• It is reasonable that in many situations
neighboring vertices influence each other
• Consider a social network where users spread

their content along connections to their
affiliates
• In turn, neighbors might be influenced by that

and hence spread (a variant of) that
information (aka. “retweet”)
• Message passing models this kind of behavior

as a simultaneous round based process
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The message passing framework

rk+1(v) = updk (rk(v), aggk ({{rk(w) | w ∈ N (v)}}))
where

• v ∈ V(G) is a vertex
• k ≥ 0
• rk+1 : V(G)→ Xk+1 for all k ≥ 0
• r0 : V(G)→ X0 is assumed to be

given
• {{rk(w) | w ∈ N (v)}} is the

multiset of (old) representations
of the neighbors of v ∈ V(G)

• aggk : NXk → X ′k aggregates a
set of (old) representations to
some value
• updk : Xk ×X ′k → Xk+1 updates

the representation of v given its
old representation and the
aggregate of the neighbors
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Weisfeiler Leman (1)

rWLk+1(v) = #k

(
rWLk (v),

{{
rWLk (w) | w ∈ N (v)

}})

• rWL0 : V(G)→ X0 maps to a discrete space
• #k : Xk ×NXk → Xk+1 is a perfect hash function
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Message passing graph neural networks (1)

rMPNNk+1 (v) = MLPUPD
k

(
rMPNNk (v), MLPk

(
∑

w∈N(v)
rMPNNk (w)

))

• rMPNN0 : V(G)→ Rd

• MLPAGG
k : Rd → Rd is a multilayer perceptron

• MLPUPD
k : Rd ×Rd → Rd is a multilayer perceptron
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Message passing graph neural networks (2)

G

1 2 3 L

⊕
MLP

· · ·

• MPNN layers are stacked on top of each other

• Graph level tasks are solved by summing together all node representations,
then a final MLP
• Training can be done with gradient descent
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The connection between WL and MPNNs

rWL
k (G) = rWL

k (H) =⇒ rMPNN
k (G) = rMPNN

k (H)

• Whenever WL cannot distinguish two graphs, any MPNN cannot compute
different representations
• MPNNs are incomplete
• Their incompleteness can be bounded by the incompleteness of the WL

algorithm
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Homomorphism Counts as Graph Representations
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Homomorphism

A homomorphism from H to G is a
function

h : V(H)→ V(G)

such that

(v,w) ∈ E(H) =⇒ (h(v),h(w)) ∈ V(G)
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Given H and G, we can ask how many
homomorphisms exist from H to G?
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Counting Homomorphisms

Given H and G, we can ask how many
homomorphisms exist from H to G?

There are twelve homomorphisms
from H to G!
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An intractable complete graph embedding


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340
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...
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...
...

G

φn(G)

Theorem [Lovász 1967].
Two graphs G and H are
isomorphic iff
φn(G) = φn(H)
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• Homomorphism counting is fixed parameter tractable

• The parameter is called tree-width
• If the pattern H has tree-width k, the homomorphisms from H to any G can

be counted in O(|V(G)|k)
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How to select the patterns?

• Some patterns are more expensive than others
• Some patterns might be more useful for the task at hand than others

We will now see two variants how to select patterns
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Graph Homomorphism Convolution (GHC) NT and Maehara (2020)

• Introduce homomorphism
counts as feature vectors of
graphs

• Propose to select ’suitable,
small’ pattern set F

– The first 13 trees
– Cycles up to length 7

• Use an SVM with these features

Graph Homomorphism Convolution

Hoang NT 1 2 Takanori Maehara 1

Abstract
In this paper, we study the graph classification
problem from the graph homomorphism perspec-
tive. We consider the homomorphisms from F to
G, where G is a graph of interest (e.g. molecules
or social networks) and F belongs to some family
of graphs (e.g. paths or non-isomorphic trees).
We show that graph homomorphism numbers pro-
vide a natural invariant (isomorphism invariant
and F-invariant) embedding maps which can be
used for graph classification. Viewing the ex-
pressive power of a graph classifier by the F-
indistinguishable concept, we prove the universal-
ity property of graph homomorphism vectors in
approximating F -invariant functions. In practice,
by choosingF whose elements have bounded tree-
width, we show that the homomorphism method
is efficient compared with other methods.

1. Introduction
1.1. Background

In many fields of science, objects of interest often exhibit
irregular structures. For example, in biology or chemistry,
molecules and protein interactions are often modeled as
graphs (Milo et al., 2002; Benson et al., 2016). In multi-
physics numerical analyses, methods such as the finite ele-
ment methods discretize the sample under study by 2D/3D-
meshes (Mezentsev, 2004; Fey et al., 2018). In social stud-
ies, interactions between people are presented as a social
network (Barabási et al., 2016). Understanding these irregu-
lar non-Euclidean structures have yielded valuable scientific
and engineering insights. With recent successful develop-
ments of machine learning on regular Euclidean data such
as images, a natural extension challenge arises: How do we
learn from non-Euclidean data such as networks or meshes
modeled as graphs?

1RIKEN Center for Advanced Intelligence Project, Tokyo,
Japan 2Tokyo Institute of Technology, Tokyo, Japan. Correspon-
dence to: Hoang NT <me@gearons.org>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

Geometric (deep) learning (Bronstein et al., 2017) is an
important extension of machine learning as it generalizes
learning methods from Euclidean data to non-Euclidean
data. This branch of machine learning not only deals with
learning irregular data but also provides a proper means to
combine meta-data with their underlying structure. There-
fore, geometric learning methods have enabled the appli-
cation of machine learning to real-world problems: From
categorizing complex social interactions to generating new
chemical molecules. Among these methods, graph-learning
models for the classification task have been the most impor-
tant subject of study.

Let X be the space of features (e.g., X = Rd for some
positive integer d), Y be the space of outcomes (e.g., Y =
{0, 1}), and G = (V (G), E(G)) be a graph with a vertex
set V (G) and edge set E(G) ⊆ V (G)× V (G). The graph
classification problem is stated follow1.

Problem 1 (Graph Classification Problem). We are given
a set of tuples {(Gi, xi, yi) : i = 1, . . . , N} of graphs
Gi = (V (Gi), E(Gi)), vertex features xi : V (Gi) → X ,
and outcomes yi ∈ Y . The task is to learn a hypothesis h
such that h((Gi, xi)) ≈ yi. 2

Problem 1 has been studied both theoretically and empiri-
cally. Theoretical graph classification models often discuss
the universality properties of some targeted function class.
While we can identify the function classes which these the-
oretical models can approximate, practical implementations
pose many challenges. For instance, the tensorized model
proposed by (Keriven & Peyré, 2019) is universal in the
space of continuous functions on bounded size graphs, but
it is impractical to implement such a model. On the other
hand, little is known about the class of functions which can
be estimated by some practical state-of-the-art models. To
address these disadvantages of both theoretical models and
practical models, we need a practical graph classification
model whose approximation capability can be parameter-
ized. Such a model is not only effective in practice, as
we can introduce inductive bias to the design by the afore-
mentioned parameterization, but also useful in theory as a
framework to study the graph classification problem.

1This setting also includes the regression problem.
2h can be a machine learning model with a given training set.
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hand, little is known about the class of functions which can
be estimated by some practical state-of-the-art models. To
address these disadvantages of both theoretical models and
practical models, we need a practical graph classification
model whose approximation capability can be parameter-
ized. Such a model is not only effective in practice, as
we can introduce inductive bias to the design by the afore-
mentioned parameterization, but also useful in theory as a
framework to study the graph classification problem.

1This setting also includes the regression problem.
2h can be a machine learning model with a given training set.



29/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Graph Homomorphism Convolution (GHC) NT and Maehara (2020)

• Introduce homomorphism
counts as feature vectors of
graphs
• Propose to select ’suitable,

small’ pattern set F
– The first 13 trees
– Cycles up to length 7

• Use an SVM with these features
Graph Homomorphism Convolution

Hoang NT 1 2 Takanori Maehara 1

Abstract
In this paper, we study the graph classification
problem from the graph homomorphism perspec-
tive. We consider the homomorphisms from F to
G, where G is a graph of interest (e.g. molecules
or social networks) and F belongs to some family
of graphs (e.g. paths or non-isomorphic trees).
We show that graph homomorphism numbers pro-
vide a natural invariant (isomorphism invariant
and F-invariant) embedding maps which can be
used for graph classification. Viewing the ex-
pressive power of a graph classifier by the F-
indistinguishable concept, we prove the universal-
ity property of graph homomorphism vectors in
approximating F -invariant functions. In practice,
by choosingF whose elements have bounded tree-
width, we show that the homomorphism method
is efficient compared with other methods.

1. Introduction
1.1. Background

In many fields of science, objects of interest often exhibit
irregular structures. For example, in biology or chemistry,
molecules and protein interactions are often modeled as
graphs (Milo et al., 2002; Benson et al., 2016). In multi-
physics numerical analyses, methods such as the finite ele-
ment methods discretize the sample under study by 2D/3D-
meshes (Mezentsev, 2004; Fey et al., 2018). In social stud-
ies, interactions between people are presented as a social
network (Barabási et al., 2016). Understanding these irregu-
lar non-Euclidean structures have yielded valuable scientific
and engineering insights. With recent successful develop-
ments of machine learning on regular Euclidean data such
as images, a natural extension challenge arises: How do we
learn from non-Euclidean data such as networks or meshes
modeled as graphs?

1RIKEN Center for Advanced Intelligence Project, Tokyo,
Japan 2Tokyo Institute of Technology, Tokyo, Japan. Correspon-
dence to: Hoang NT <me@gearons.org>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

Geometric (deep) learning (Bronstein et al., 2017) is an
important extension of machine learning as it generalizes
learning methods from Euclidean data to non-Euclidean
data. This branch of machine learning not only deals with
learning irregular data but also provides a proper means to
combine meta-data with their underlying structure. There-
fore, geometric learning methods have enabled the appli-
cation of machine learning to real-world problems: From
categorizing complex social interactions to generating new
chemical molecules. Among these methods, graph-learning
models for the classification task have been the most impor-
tant subject of study.

Let X be the space of features (e.g., X = Rd for some
positive integer d), Y be the space of outcomes (e.g., Y =
{0, 1}), and G = (V (G), E(G)) be a graph with a vertex
set V (G) and edge set E(G) ⊆ V (G)× V (G). The graph
classification problem is stated follow1.

Problem 1 (Graph Classification Problem). We are given
a set of tuples {(Gi, xi, yi) : i = 1, . . . , N} of graphs
Gi = (V (Gi), E(Gi)), vertex features xi : V (Gi) → X ,
and outcomes yi ∈ Y . The task is to learn a hypothesis h
such that h((Gi, xi)) ≈ yi. 2

Problem 1 has been studied both theoretically and empiri-
cally. Theoretical graph classification models often discuss
the universality properties of some targeted function class.
While we can identify the function classes which these the-
oretical models can approximate, practical implementations
pose many challenges. For instance, the tensorized model
proposed by (Keriven & Peyré, 2019) is universal in the
space of continuous functions on bounded size graphs, but
it is impractical to implement such a model. On the other
hand, little is known about the class of functions which can
be estimated by some practical state-of-the-art models. To
address these disadvantages of both theoretical models and
practical models, we need a practical graph classification
model whose approximation capability can be parameter-
ized. Such a model is not only effective in practice, as
we can introduce inductive bias to the design by the afore-
mentioned parameterization, but also useful in theory as a
framework to study the graph classification problem.

1This setting also includes the regression problem.
2h can be a machine learning model with a given training set.
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Expectation-Complete Graph Representations
with Homomorphisms

ICML 2023

Pascal Welke*, Maximilian Thiessen*, Fabian Jogl, and Thomas Gärtner
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Let ϕX : G → V depend on a random variable X drawn from a distr. D over a set X

We call ϕX complete in expectation if the expectation

E
X∼D

[ϕX(·)] = ∑
t∈X

Pr(X = t)ϕt(·)

is a complete graph embedding
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polynomial time in V(G) in expectation for all G ∈ Gn.

• We also showed

– convergence results
– universal approximation results
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Graph Homomorphism Convolution (F-MPNNs) Barceló et al (2021)

G

1 2 3 L

⊕
MLP

· · ·

add hom-counts here

• This architecture is more
expressive than WL

• It is incomparable to 2-WL
• Can be bounded by F-WL (!)

Graph Neural Networks with Local Graph
Parameters

Pablo Barceló1,2, Floris Geerts3, Juan Reutter1,2, Maksimilian Ryschkov3
1 Department of Computer Science, PUC, Chile

2 Millennium Institute for Foundational Research on Data, Chile
3 Department of Computer Science, University of Antwerp, Belgium

[pbarcelo,jreutter]@ing.puc.cl, [floris.geerts,maksimilian.ryschkov]@uantwerpen.be

Abstract

Various recent proposals increase the distinguishing power of Graph Neural Net-
works (GNNs) by propagating features between k-tuples of vertices. The distin-
guishing power of these “higher-order” GNNs is known to be bounded by the
k-dimensional Weisfeiler-Leman (WL) test, yet their O(nk) memory requirements
limit their applicability. Other proposals infuse GNNs with local higher-order graph
structural information from the start, hereby inheriting the desirable O(n) memory
requirement from GNNs at the cost of a one-time, possibly non-linear, preprocess-
ing step. We propose local graph parameter enabled GNNs as a framework for
studying the latter kind of approaches. We precisely characterize their distinguish-
ing power, in terms of a variant of the WL test, and in terms of the graph structural
properties that they can take into account. Local graph parameters can be added to
any GNN architecture, and are cheap to compute. In terms of expressive power, our
proposal lies in the middle of GNNs and their higher-order counterparts. Further,
we propose several techniques to aid in choosing the right local graph parameters.
Our results connect GNNs with deep results in finite model theory and finite vari-
able logics. Our experimental evaluation shows that adding local graph parameters
often has a positive effect on a variety of GNNs, datasets and graph learning tasks.

1 Introduction

Context. Graph neural networks (GNNs) [Merkwirth and Lengauer, 2005, Scarselli et al., 2009],
and its important class of Message Passing Neural Networks (MPNNs) [Gilmer et al., 2017], are one
of the most popular methods for graph learning tasks. Such MPNNs use an iterative message passing
scheme, based on the adjacency structure of the underlying graph, to compute vertex (and graph)
embeddings in some real Euclidean space.

The expressive (or distinguishing) power of MPNNs is, however, rather limited [Morris et al., 2019,
Xu et al., 2019]. Indeed, MPNNs will always identically embed two vertices (graphs) when these
vertices (graphs) cannot be distinguished by the one-dimensional Weisfeiler-Leman (WL) algorithm.
Two graphs G1 and H1 and vertices v and w that cannot be distinguished by WL (and thus any
MPNN) are shown in Fig. 1. The expressive power of WL is well-understood [Cai et al., 1992, Dell
et al., 2018, Arvind et al., 2020] and basically can only use tree-based structural information in
the graphs to distinguish vertices. Hence, no MPNN can detect that vertex v in Fig. 1 is part of a
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Abstract

Various recent proposals increase the distinguishing power of Graph Neural Net-
works (GNNs) by propagating features between k-tuples of vertices. The distin-
guishing power of these “higher-order” GNNs is known to be bounded by the
k-dimensional Weisfeiler-Leman (WL) test, yet their O(nk) memory requirements
limit their applicability. Other proposals infuse GNNs with local higher-order graph
structural information from the start, hereby inheriting the desirable O(n) memory
requirement from GNNs at the cost of a one-time, possibly non-linear, preprocess-
ing step. We propose local graph parameter enabled GNNs as a framework for
studying the latter kind of approaches. We precisely characterize their distinguish-
ing power, in terms of a variant of the WL test, and in terms of the graph structural
properties that they can take into account. Local graph parameters can be added to
any GNN architecture, and are cheap to compute. In terms of expressive power, our
proposal lies in the middle of GNNs and their higher-order counterparts. Further,
we propose several techniques to aid in choosing the right local graph parameters.
Our results connect GNNs with deep results in finite model theory and finite vari-
able logics. Our experimental evaluation shows that adding local graph parameters
often has a positive effect on a variety of GNNs, datasets and graph learning tasks.
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Abstract

Many real-world graphs are large and have some characteristic subgraph patterns,
such as triangles in social networks, cliques in web graphs, and cycles in molecular
networks. Detecting such subgraph patterns is important in many applications;
therefore, establishing graph neural networks (GNNs) that can detect such patterns
and run fast on large graphs is demanding. In this study, we propose a new GNN
layer, named graph homomorphism layer. It enumerates local subgraph patterns
that match the predefined set of patterns P‚, applies non-linear transformations
to node features, and aggregates them along with the patterns. By stacking these
layers, we obtain a deep GNN model called deep homomorphism network (DHN).
The expressive power of the DHN is completely characterised by the set of patterns
generated from P‚ by graph-theoretic operations; hence, it serves as a useful
theoretical tool to analyse the expressive power of many GNN models. Furthermore,
the model runs in the same time complexity as the graph homomorphisms, which
is fast in many real-word graphs. Thus, it serves as a practical and lightweight
model that solves difficult problems using domain knowledge.

1 Introduction

1.1 Background

Graph neural network (GNN) is a type of neural network that takes a graph as input. It has been applied
to many problems in various domains, such as influence prediction in social networks [60], page
ranking in web graphs [65], and chemical prediction in biological networks [39]. See textbooks [46,
32, 71] for the basics of GNN.

The expressive power of GNNs is the central research topic in GNN [63, 75]. A recent interest in
this topic is the detectability of subgraph patterns. Many graphs that appear in practice have typical
subgraph patterns. For example, social networks have many triangles, which indicates the clustering
structure of the society. Web graphs have many cliques that represent clusters of websites, such as
link farms. Molecular networks have benzene structures. Since detecting these subgraph patterns is a
common strategy in network science [52] and graph data mining [15], we expect that GNNs applied
in these fields equip expressive power to detect such patterns. Furthermore, since the graphs in these
applications are typically large, we also expect that the GNNs applied in these fields run fast.

Unfortunately, most of the existing GNN models do not meet these expectations. The commonly used
GNNs, called message-passing GNNs (MPGNNs), do not meet the expectation of expressive power,
as they can only detect tree-shaped patterns [72, 19]. More complex GNNs can detect subgraph
patterns, but typically do not meet either expectation: Higher-order GNNs assign values to k-tuples
of nodes instead of nodes [53, 50, 36]. They have the same expressive power as the k-dimensional

*Authors are listed in alphabetical order.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).
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– Intricate results linking homomorphism counting and the k-WL test Neuen (2024)
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– Homomorphism bases (aka spasms) of patterns allow to compute and learn(!) very
powerful graph invariants Jin et al (2024) Dell et al (2018) Curticapean et al (2017)
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• Homomorphism-based methods work well in theory and practice
ICML 2023 NeurIPS 2024 ECML/PKDD 2018

• Randomization yields expressive graph representations
ICML 2023 KDD 2020 PhD thesis 2019

• There is much more...
– Generalization bounds of GNNs using homomorphism counts Li et al (2024)

– Intricate results linking homomorphism counting and the k-WL test Neuen (2024)

Lanzinger and Barceló (2024)

– Homomorphism bases (aka spasms) of patterns allow to compute and learn(!) very
powerful graph invariants Jin et al (2024) Dell et al (2018) Curticapean et al (2017)
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