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Problems in graph learning
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Problems in graph learning

Neural methods achieve
remarkable results in graph
learning
- molecule synthesis and prediction
- modeling of human social
behavior

but come with

- significant resource demands

- too much complexity to be
interpretable

- which hinders application in many
scenarios
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Graph Representation Learning



The goal

Vectorial graph representations
that
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The goal

Vectorial graph representations
that

- yield semantically and structurally
meaningful distances

- are interpretable

- are adaptable to given data
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Graph representation learning

Graph
Structured
Data

Vectorial

Representation

Solve Your
Learning Task
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Graph representation learning
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Graph representation learning
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Kernel Methods

Design of a
Kernel Function

Implicit Feature
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The problem with vectorial graph representations

We want our graph representation function ¢ to be

® permutation-invariant

for all isomorphic graphs 7’/\
G~ H: ¢(G) = ¢(H) ’
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The problem with vectorial graph representations

We want our graph representation function ¢ to be

® permutation-invariant

for all isomorphic graphs 7’/\
G~H: p(G) = ¢(H)

e complete @

for all non-isomorphic graphs

G#H: p(G) # 9(H) ﬁ/
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Why do we care?

Graph
Structured
Data

Vectorial

Representation

Solve Your
Learning Task
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Why do we care?

Graph

Structured e Unfortunately computing any

permutation invariant and
complete embedding (or kernel)
is as hard as deciding graph

Data

isomorphism
Vectorial RN * Typical solution: drop
Representation | completeness for efficiency

- most practical graph kernels,
GNNs, Weisfeiler Leman test, ...

Solve Your We cannot get
' back what we
Learning Task
lose here
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Message Passing and the Weisfeiler Leman Algorithm



Message Passing

e Let's assume that we have some feature
representation ro : V(G) — RY for the vertices
in our graph
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Message Passing

® Let's assume that we have some feature
representation ro : V(G) — RY for the vertices

in our graph
e |t is reasonable that in many situations
neighboring vertices influence each other . .
. . ¥‘0\_/ﬁ
e Consider a social network where users spread \
their content along connections to their / >
affiliates o

® |n turn, neighbors might be influenced by that
and hence spread (a variant of) that
information (aka. “retweet”)
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Message Passing

® Let's assume that we have some feature
representation ro : V(G) — RY for the vertices

in our graph
e |t is reasonable that in many situations
neighboring vertices influence each other . .
. . ‘x‘o\_/ﬁ
e Consider a social network where users spread \
their content along connections to their / >
affiliates o

® |n turn, neighbors might be influenced by that
and hence spread (a variant of) that
information (aka. “retweet”)

® Message passing models this kind of behavior
as a simultaneous round based process
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The message passing framework

Mia(V) = updp (re(v), agge ({{re(w) |w e N(v)}}))
where
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The message passing framework

r. (v) =upd, (r.(v), agg. ({{r.(w) |weN(v)}}))
where

® v e V(G) is a vertex

Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts 13/60



The message passing framework

(V) = updg (7:(v), aggr ({{r(w) [w e N(V)}}))
where

® v e V(G) is a vertex
* k>0
o :V(G) —» Xy, forallk>o0

Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts 13/60



The message passing framework

M1 (V) = updg (7:(v), agge ({{r+(w) [w e N(v)}}))
where

® v e V(G) is a vertex
* k>0
reeq : V(G) — Xgyq forallk > o0

e 1, :V(G) — Xy is assumed to be
given
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The message passing framework

Mea (V) = updg (re(v), agg ( )
where

® v e V(G) is a vertex

* k>0

® rpiq:V(G) = Xy forallk >0

® ro:V(G) — Xy is assumed to be
given

° is the
multiset of (old) representations
of the neighbors of v € V(G)
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The message passing framework

Mk (V) = updg (re(v), ({{re(w) [w € N(v)}}))
where
® v e V(G) is a vertex . : IN* — X} aggregates a
e k>0 set of (old) representations to
® rpia: V(G) = Xpyq forallk >0 some value
® ry:V(G) — Xy is assumed to be
given

{{re(w) | w € N(v)}} is the
multiset of (old) representations
of the neighbors of v € V(G)
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The message passing framework

Me4a(V) = (re(v), aggr ({{re(w) [w € N(v)}}))
where
® v e V(G) is a vertex * agg, : N — X/ aggregates a
e k>0 set of (old) representations to
® rpia: V(G) = Xpyq forallk >0 some value
. /
° ro: V(G) — X, is assumed to be ¢ P Xy X Xy = g Updates
given the representation of v given its

old representation and the
aggregate of the neighbors

{{rr(w) |w e N(v)}}isthe
multiset of (old) representations
of the neighbors of v € V(G)
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The message passing framework

Fea(v) = updy (re(v), aggr ({{re(w) |w € N(v)}}))

where
® v e V(G) is a vertex * agg, : N — X/ aggregates a
e k>0 set of (old) representations to
® rpia: V(G) = Xpyq forallk >0 some value
. /
° ro: V(G) — X, is assumed to be ® upd : X X Xy — X updates
given the representation of v given its

old representation and the
aggregate of the neighbors

{{rr(w) |w e N(v)}}isthe
multiset of (old) representations
of the neighbors of v € V(G)

We will omit kR in the notation of upd, and agg, when updy = upd, = ...
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Weisfeiler Leman (1)

it v) = e (W), {{rtw) [wenw)}})
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Weisfeiler Leman (1)

it ) = # (1) {{ ) lwen ) }})
Where

o :V(G) — A, maps to a discrete space
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Weisfeiler Leman (1)

i) = (). {{rtw) [wenw})
Where

o rM . V(G) — X, maps to a discrete space
J : Xp x N — X, is a perfect hash function
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Weisfeiler Leman (2)

it v) = e (W), {{rtw) [wenw)}})
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Weisfeiler Leman (2)

it v) = e (W), {{rtw) [wenw)}})

Let's think of the hash values as colors of vertices
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Weisfeiler Leman (2)

it v) = e (W), {{rtw) [wenw)}})

Let's think of the hash values as colors of vertices

k< ©
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Weisfeiler Leman (2)

it (v) = #e (), {{rtw) lwen ) }})
Let's think of the hash values as colors of vertices

= o §f o3

= 04 o0

=0 oo
b §(eo e of

k= 1
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Weisfeiler Leman (2)

HW) = (AW {3 [w e ) )

Let's think of the hash values as colors of vertices

k=1
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Message passing graph neural networks (1)

r;\?ﬂf!IVN( ) MLPUPD < IAAPNN MLPk < 2 rMPNN ))

weN(v)
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Message passing graph neural networks (1)

r;\?ﬂf!IVN( ) MLPUPD < /;:lPNN MLPk < 2 rMPNN ))

weN(v)

Where
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Message passing graph neural networks (1)

riPN (v) = MLPRPP < (V), MLP < Y
w

eN(v)

Where

. : V(G) — RY
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Message passing graph neural networks (1)

rgﬂ_ﬂVN( ) MLPUPD < QAPNN(V), < 2 rMPNN ))

weN(v)

Where

o MPNN . y(G) — RY
. :RY — R? is a multilayer perceptron
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Message passing graph neural networks (1)

rm’F_’!‘VN(V) _ <r£/IPNN MLPk< 2 rMPNN

weN(v)

Where

o MPNN . y(G) — RY
o MLPLS : RY — RY is a multilayer perceptron
. :RY x RY — Ry is a multilayer perceptron
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Message passing graph neural networks (2)

1 2 3 L
G ' ' ' - '

e MPNN layers are stacked on top of each other

MLP

7]
4
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Message passing graph neural networks (2)

1 2 3 L MLP
G ' ' ' . ' @ '
e MPNN layers are stacked on top of each other

e Graph level tasks are solved by summing together all node representations,
then a final MLP
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Message passing graph neural networks (2)

1 2 3 L MLP
G ' ' ' . ' @ .
e MPNN layers are stacked on top of each other

e Graph level tasks are solved by summing together all node representations,
then a final MLP

® Training can be done with gradient descent
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Message Passing and the Weisfeiler Leman Algorithm |
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Isomorphic Graphs have ldentical WL Label Histograms
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Isomorphic Graphs have ldentical WL Label Histograms
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Isomorphic Graphs have ldentical WL Label Histograms
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Nonisomorphic Graphs Can Have ldentical Label Histograms
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Nonisomorphic Graphs Can Have ldentical Label Histograms
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Nonisomorphic Graphs Can Have ldentical Label Histograms
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The connection between WL and MPNNs

i) = L (H) = 1PV (6) = PV (H)
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The connection between WL and MPNNs

i) = L (H) = 1PV (6) = PV (H)

e Whenever WL cannot distinguish two graphs, any MPNN cannot compute
different representations
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The connection between WL and MPNNs

i) = L (H) = 1PV (6) = PV (H)

Whenever WL cannot distinguish two graphs, any MPNN cannot compute
different representations

MPNNs are incomplete

Their incompleteness can be bounded by the incompleteness of the WL
algorithm
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Homomorphism Counts as Graph Representations



Homomorphism

A homomorphism from Hto G is a
function

h:V(H) — V(G)
such that

(v,w) € E(H) = (h(v), h(w)) € V(G)
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Counting Homomorphisms

Given H and G, we can ask how many
homomorphisms exist from H to G? /—\
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Counting Homomorphisms

Given H and G, we can ask how many
homomorphisms exist from H to G? /—\

There are twelve homomorphisms
from H to G!
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An intractable complete graph embedding
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An intractable complete graph embedding

#n(G)
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An intractable complete graph embedding

#n(G)
G o [20]
2 o—o | 60
< |260
N Lo | 60
/ 0 : : Theorem [Lovasz 1967].
iii 340 Two graphs G and H are
4 ' . isomorphic iff
: ¢n(G) = ¢n(H)
o [ X |20
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We can count homomorphisms (for some graphs) in practice!

e Homomorphism counting is fixed parameter tractable
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We can count homomorphisms (for some graphs) in practice!

e Homomorphism counting is fixed parameter tractable
e The parameter is called tree-width

e |f the pattern H has tree-width R, the homomorphisms from H to any G can
be counted in O(|V(G)|¥)
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An intractable complete graph embedding
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An intractable complete graph embedding
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An-ntractable complete graph embedding

260
60 | <
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How to select the patterns?

® Some patterns are more expensive than others
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How to select the patterns?

® Some patterns are more expensive than others
e Some patterns might be more useful for the task at hand than others

We will now see two variants how to select patterns
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Graph Homomorphism Convolution (GHC

Introduce homomorphism
counts as feature vectors of
graphs
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Graph Homomorphism Convolution

Hoang NT'* Takanori Machara

Abstract

In this paper, we study the graph classification
problem from the raph homomorphi

tive. We consider the homomorphisms from F o
G where G'is a graph ofinterest (¢.. molecules
or social networks) and F” belongs 10 some family
of graphs (e.g. paths or non-isomorphic trees).
We show that graph homomorphism numbers pro-
vide a natural invariant (isomorphism invariant

and F-

Geometric (deep) learning (Bronstein et al, 2017) is an
important extension of machine leaming as it generalizes
learning methods from Euclidean data to non-Euclidean
data, This branch of machine learning not only deals with
leamning irregular data but also provides & proper means (o
‘combine meta-data with their underlying structure. There-

5
:
£
z
z

catgoriingcomple soialneactions 0 geerting new
h raph-learning

can be
ke for graph csication, Viewing te cx.

ssive power of a graph classifer by the F-
indistinguishable concept, we prove the universal-
ity property of graph homomorphism vectors in
approximating F-invariant functions. In practice,
by choosing  whose clements have bounded tree-
widih, we show that the homomorphism method
i effcient compared with other methods.

1. Introduction
L.1. Background

In many fields of science, objects of interest often exhibit

irmegular structures. For example, in biology or chemistry,

molecules and protein interactions are often modeled as

el o it ek v b e impor-
tant subject of study.

Let ¥ be the space of features (c.z.,  for some
posiv e 0, behe o somcoms 5.
o m 30 G = (7(6), E(G) bes g with  vertex

i £10) V1) G The g
o ks problem i stated follow!

Problem 1 (Graph Classification Problem). We are given
st of tpes (Goz) : = Lo} of qrups
G = WV(G.) EIG), e faues . VG,

e . 3 T o o o apoties
S b

Problem 1 has been studied both theoretcally and empiri-
callv. Theoretical eranh classification models often discuss
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Introduce homomorphism
counts as feature vectors of
graphs

® Propose to select 'suitable,
small’ pattern set F
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Graph Homomorphism Convolution

Hoang NT'*

Abstract

In this paper, we study the graph classification

or social networks) and F” belongs 10 some family
of graphs (e.g. paths or non-isomorphic trees).
We show that graph homomorphism numbers pro-

vide a natural invariant (isomorphism invariant
‘and F-invariant) embedding maps which can be
used for graph classification.  Viewing the ex-
pressive power of a graph classifier by the -
indistinguishable concept, we prove the universal-
ity property of graph homomorphism vectors in
approximating F-invariant functions. In practice,
by choosing  whose clements have bounded tree-

widih, we show that the homomorphism method
i effcient compared with other methods.

1. Introduction
L.1. Background

‘Takanori Machara |

Geometric (deep) learning (Bronstein et al, 2017) is an
JPortant extension of machin learning as it generalizes.
ning methods from Euclidean data to non-Euclidcan
“This branch of machinc learning not only deals with

cation of machine learning to real-world problems: From
categorizing complex social interactions 10 generating new
chemical molecules. Among these methods, graph-learning
models for the classification task have been the most impor-
tant subject of study.

Let ¥ be the space of features (e.z. X = B for some
postive ) b he s of ctcomes (5.~
{0,1)), and G = (V(G). E(G) be a graph with a veriex
G s ELG) S V(G ) T s
classfication problem is staed follow

Problem 1 (Graph Classification Problem). We are given
o set of ples (Goziow) 1 = 1.V} of srphs
G = (V(G.) EIG), vre s 2. V(G

ot oo &3 T e sty e petns
Such tat (G ) = . *

In many fields of science, objects of interest often exhibit
imglar structaes. For example, i biology or chemisry. - Problem 1 has been stied both therediclly and rpir-

molecules and protein interactions are often modeled a5 callv. Theoretical eranh ck
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Graph Homomorphism Convolution (GHC)

Introduce homomorphism
counts as feature vectors of

graphs

® Propose to select 'suitable,
small’ pattern set F

Pascal Welke

The first 13 trees
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Graph Homomorphism Convolution

Hoang NT'* Takanori Machara !

Abstract

In this paper, we study the graph classification
problem from the graph homomorphism perspec-
tive. We consider the homomorphisms from F o
G where Gis a graph of interest (¢.g. molecules
or social networks) and F” belongs 10 some family
of graphs (e.g. paths or non-isomorphic trees).
We show I homomorphism numbers pro-
vide a natural invariant (isomorphism invariant
‘and F-invariant) embedding maps which can be
used for graph classification.  Viewing the ex-
pressive power of a graph classifier by the -

ity property of graph homomorphism vectors in
approximating F-invariant functions. In practice,
by choosing  whose clements have bounded tree-
widih, we show that the homomorphism method
i effcient compared with other methods.

1. Introduction
L.1. Background
In many fields of science, objects of interest often exhibit

irmegular structures. For example, in biology or chemistry,
molecules and protein interactions are often modeled as

Geometric (deep) learning (Bronstein et al, 2017) is an
important extension of machine learing as it generalizes
learning methods from Euclidean data to non-Euclidean
data, This branch of machine learning not only deals with
leamning irregular data but also provides a proper means (o
combine meta-data i underlying structure. There-
thods have enabled the appli-
o real-world problems: From
categorizing complex social interactions 10 generating new
chemical molecules. Among these methods, graph-learning
models for the classification task have been the most impor-
tant subject of study.

Let & e the space of features (e, & = B for some
posiiv integer ), 3 be the space of outcomes c.2.,Y =

). E(G)) be a graph with a vriex
() € V(G) % V(G). The graph
sated follow!

e eanures 5
and oucomes . & 3. Th task s e a Ryt v
such that h{(G,2,)) =~ . *

Probom | has been studiedboth teoreically nd empiri-
callv. Theoretical or  dels often discuss.
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Graph Homomorphism Convolution (GHC)

Introduce homomorphism
counts as feature vectors of
graphs

® Propose to select 'suitable,
small’ pattern set F

The first 13 trees
Cycles up to length 7
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Graph Homomorphism Convolution

Hoang NT'* Takanori Machara !

Abstract

In this paper, we study the graph classification
problem from the graph homomorphism perspec-

tive. We consider the homomorphisms from F o
G where Gis a graph of interest (¢.g. molecules
or social networks) and F” belongs 10 some family
of graphs (e.g. paths or non-isomorphic trees).
We show that graph homomorphism numbers pro-

vide a natural invariant (isomorphism invariant
‘and F-invariant) embedding maps which can be
used for graph classification.  Viewing the ex-
pressive power of a graph classifier by the -
indistinguishable concept, we prove the universal-
ity property of graph homomorphism vectors in
approximating F-invariant functions. In practice,
by choosing  whose clements have bounded tree-

widih, we show that the homomorphism method
i effcient compared with other methods.

1. Introduction
L.1. Background

In many fieldsofscence,objectsofinerestofen exibic
irmegular structures. For example, in biology or chemistry,

Geometric (deep) learning (Bronstein et al, 2017) is an
important extension of machine learing as it generalizes
learning methods from Euclidean data to non-Euclidean
data, This branch of machine learning not only deals with
provides 4 proper means to
eir underlying structure. There-
nethods have ensbled the appli-
cation of machine learming to real-world problems: From
categorizing complex social interactions 10 generating new
chemical molecules. Among these methods, graph-learning
models for the classification task have been the most impor-
tant subject of study.

Let ' be the space of features (e.g.. X = B for some
positve integer d), ' be the spac of auicomes (c.£.. ) =
{0,1)), 04 G = (V(G), E(G)) be a graph with a vertex
st V(G) and edge set E(G) € V(G)  V(G). The graph
Classification problem s stated follow!

Probem 1 (Gragh Classfcuion Problm. We are sven
a.e1 of ples ) N} of graphs
G = (V(G, N, Jeatures 13- VIG5
The task s 10 learm a hypothesis 1

and utco
such that h{(G.

Problem 1 has been studied both theoretcally and empiri-
callv. Theoretical eranh classification models often discuss
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Graph Homomorphism Convolution (GHC)

Introduce homomorphism
counts as feature vectors of
graphs
® Propose to select 'suitable,
small’ pattern set F
The first 13 trees
Cycles up to length 7

e UUse an SVM with these features
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GHC: Experimental results

Table 2. Classification accuracy over 10 experiments
(a) Synthetic datasets

METHODS CSL BIPARTITE ~ PAULUS25
Practical models

GIN 10.00 £ 0.00 55754+ 7.91 7.14 £ 0.00
GNTK 10.00 +0.00  58.03 +6.84 7.14 £ 0.00
Theory models

Ring-GNN  10~80 £ 15.7 55.724+6.95 7.15+0.00
GHC-Tree 10.00 +0.00  52.68 +7.15 7.14 + 0.00
GHC-Cycle  100.0 + 0.00  100.0 + 0.00 7.14 & 0.00

(b) Benchmark datasets

METHODS MUTAG IMDB-BIN  IMDB-MUL
Practical models

GNTK 89.46 £7.03 7561 +£3.98 5191 +£3.56
GIN 89.40 £5.60 70.70 +1.10 43.20 £ 2.00
PATCHY-SAN  89.92 £4.50 71.00+220 4520+ 2.80
WL kernel 90.40 +5.70  73.80 +3.90  50.90 + 3.80
Theory models

Ring-GNN 7807 £5.61 73.00£540 48.20+2.70
GHC-Tree 89.28 £8.26 72.10+2.62 48.60 +4.40
GHC-Cycles 87.81 £7.46 7093 +4.54 4741 +3.67

Pascal Welke

Expressive Graph Embeddings via Homomorphism Counts
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e Good results on some synthetic
datasets
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e Good results on some synthetic
datasets

e Competitive results on (smaller)
benchmark datasets
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GHC is incomplete

e GHC in practice requires a fixed,
user defined choice of the
pattern set F
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GHC is incomplete

e GHC in practice requires a fixed,
user defined choice of the
pattern set F

e This allows to bound the
expressivity of GHC by an
extension of the WL algorithm:
R-WL
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Expectation-Complete Graph Representations
with Homomorphisms

ICML 2023

Pascal Welke*, Maximilian Thiessen*, Fabian Jogl, and Thomas Gartner

A TU Wien
M £\ Vienna | Austria
Research Unit Machine Learning



At a glance

® Expressiveness bounded by R-WL
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e \We present an architecture
which has no upper expressivity
bound

e Asymptotically, our graph
representation is complete.
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which has no upper expressivity
bound

e Asymptotically, our graph
representation is complete.
= allows to adapt to challenging

learning tasks without domain
knowledge
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At a glance

® Expressiveness bounded by R-WL

= choice of architecture implies a
fixed limit on what graphs can be
distinguished

e \What can we do if we don’t know
anything about our datset?

Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

We present an architecture
which has no upper expressivity
bound

Asymptotically, our graph
representation is complete.
allows to adapt to challenging
learning tasks without domain
knowledge

works well in practice
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What If we keep completeness ...

. In expectation?
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Expectation complete graph embeddings

Let ¢x : G — V depend on a random variable X drawn from a distr. D over a set X
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Expectation complete graph embeddings

Let ¢x : G — V depend on a random variable X drawn from a distr. D over a set X

We call ¢x complete in expectation if the expectation

E [9x()) = X Pr(X = 0n()

teX

is a complete graph embedding
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What is the benefit?

Sampling X4, X5, X3, ... will eventually
make the joint embedding

(9% (G), ¢x,(G), ¢x,(G). - - )

arbitrarily expressive
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Sampling X4, X5, X3, ... will eventually
make the joint embedding

(9% (G), ¢x,(G), ¢x,(G). - - )

arbitrarily expressive
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What If we keep completeness ...
. 1IN expectation
... efficiently
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An intractable complete graph embedding

260
60

n
AN

4 5 o
o

120

Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts 38/60



An intractable complete graph embedding

260
60 | <

=
Lo

4 o] -
=

120 —

Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts 38/60



An-ntractable complete graph embedding

260
60 | <

A A
Lo Lo

] m 3110 < ij 340
pd I

120 — 120

Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts 38/60



Efficient and expectation-complete graph embeddings

e Homomorphism counting is fixed parameter tractable
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Efficient and expectation-complete graph embeddings

e Homomorphism counting is fixed parameter tractable
e We design a distribution D that weights down expensive patterns

)

Computing the expectation-complete graph embedding ¢x(G) with X ~ D takes
polynomial time in V(G) in expectation for all G € Gp,.

Theorem (

e \We also showed
— convergence results

Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

39/60



Efficient and expectation-complete graph embeddings

e Homomorphism counting is fixed parameter tractable
e We design a distribution D that weights down expensive patterns

)

Computing the expectation-complete graph embedding ¢x(G) with X ~ D takes
polynomial time in V(G) in expectation for all G € Gp,.

Theorem (

e \We also showed

- convergence results
- universal approximation results
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Efficient and expectation-complete GNNs

We can make any (message passing) GNN expectation-complete
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Efficient and expectation-complete GNNs

We can make any (message passing) GNN expectation-complete

GNN Graph
Layers  Pooling

A

MLP

D — y(G)

B
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Empirical results

Table 1. Performance of different GNNs on 9 OGB benchmarks
and ZINC. Baseline of a GNN with homorphism counts is the
same GNN without homomorphism counts. Results for GNNs
with homorphism counts are averaged over 9 different random
samples of pattern graphs.

Topl/ 2 / 3

Beats baseline

GIN
GIN+hom
GCN
GCN-+hom
GIN+F
GIN+hom +F
GCN+F
GCN+hom+F

0%/ 0%/ 0%
0% /10% / 10%
0%/ 0%/ 0%
10% / 10% / 20%
0% / 10% / 50%
20% / 40% / 70%
0% / 50% / 60%
70% / 80% / 90%

100%
90%
90%

90%
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Table 2. Accuracy on synthetic data

Method CSL PAULUS25
GIN 10.00 £0.00 7.14 + 0.00
GNTK 10.00 £0.00 7.14 £+ 0.00
GHC-Tree 10.00 £ 0.00  7.14 £ 0.00
GHC-Cycle 100.0 +£0.00 7.14 £0.00
WL 10.00 £ 0.00 7.14 £ 0.00
Ours 37.67£9.11 100.0 £ 0.00

41/60



An open question and a recent answer

e Our runtime is polynomial in expectation, but
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e How can we speedup the runtime while maintaining the theoretical
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® (BSc thesis 2023
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An open question and a recent answer

e Our runtime is polynomial in expectation, but

- We can realistically sample 20-100 patterns
- (that suffices in practice)

e How can we speedup the runtime while maintaining the theoretical
properties?

Estimating homomorphism counts instead of exact computation might work well

® (BSc thesis 2023

® (DD 2020)
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An open question and a recent answer

e Our runtime is polynomial in expectation, but

- We can realistically sample 20-100 patterns
- (that suffices in practice)

e How can we speedup the runtime while maintaining the theoretical
properties?

Estimating homomorphism counts instead of exact computation might work well

® (BSc thesis 2023

o
e fast and precise in practice
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Homomorphism Counts as Node Representations



Connecting homomorphism counting and message passing

e So far, message passing and homomorphism counting have touched, but not
really interacted
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Connecting homomorphism counting and message passing

e So far, message passing and homomorphism counting have touched, but not
really interacted

e Homomorphism counts can also be included in the message passing
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Rooted homomorphism counting

A rooted graph (G, v) is a graph
G with a special root v € V(G)
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Rooted homomorphism counting

A rooted graph (G, v) is a graph

. . H—‘Oﬂ
G with a special root v € V(G) o
A rooted homomorphism h from
(H,r)to (G,v)isa v

homomorphism h with h(r) = v
® We can now count rooted

homomorphisms for any node v Oy
inG
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Rooted homomorphism counting

A rooted graph (G, v) is a graph

. . H—‘Oﬂ
G with a special root v € V(G) o
A rooted homomorphism h from
(H,r)to (G,v)isa v

homomorphism h with h(r) = v
® We can now count rooted

homomorphisms for any node v Oy
inG
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Graph Homomorphism Convolution (F-MPNNs) i

N )

add hom-counts here

e This architecture is more
expressive than WL

Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts
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Graph Homomorphism Convolution (F-MPNNs)

[TIER

add hom-counts here

Barcelo et al (2021)

N )

Graph Neural Networks with Local Graph
Parameters

e This architecture is more e
expressive than WL

It is incomparable to 2-WL

Maksimilian Ryschkov®
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Graph Homomorphism Convolution (F-MPNNs)

[TIER

add hom-counts here

Barcelo et al (2021)

N )

Graph Neural Networks with Local Graph
Parameters

e This architecture is more
expressive than WL

e |tisincomparable to 2-WL
e Can be bounded by F-WL (!)

Pablo Barceld' 2, Floris Geerts’, Juan Reutter’ 2, Maksimilian Ryschkov®

ing power of Graph Neural Net-
i vertices. The distin-
unded by
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Experimental Results

(a) Results for the ZINC dataset show that homomorphism (hom)  (b) The effect of different cycles for the

counts of cycles improve every model. We compare the mean  GAT model over the ZINC dataset, using ‘Table 2; Results for the PATTERN dataset show that homomorphism counts improve all models except
absolute error (MAE) of each model without any homomorphism  mean absolute error Gated GCN. We compare weighted aceuracy of cach model without any homomorphism count (base-
count (baseline), against the model augmented with the hom line) against the model augmented with the counts of the set ¥ that showed best performance (best ).

count, and with subgraph isomorphism (iso) counts of C's~C'y

MAE MODEL + BEST F ACCURACY BASELINE_ ACCURACY BEST
MoDEL MAE (BASE)  MAE (HOM)  MAE (150) 0.47+0.02 78.83 = 0.60 85.50 +0.23
GAT 0474002 0.22001  024£001 e Ko} 7425138 8249 %048
GCN 0.35£0.01  0.20+0.01  0.22:£0.01 33?133? GraphSage { Ky, K1, Ko} 70.78 + 0,19 85,85+ 0.15
GraphSage 0444001 0.2420.01  0.2440.01 3140, MoNet { s, Ky, Ks} 85.90 4 0,03 86.63 + 0.03
MoNet 0254001 0194001  0.16+0.01 g;giggi GatedGCN {0} 86.15 £ 0.08 86.15 + 0.08
GatedGCN  0.34+0.05  [0.1353+0.01] 0.1357:£0.01 0.22:0.01 Table 3: All models improve the Hits@50 metric over the COLLAB dataset. We compare each model
without any homomorphism count (baseline) against the model augmented with the counts of the set

of patterns that showed best performance (best F).

MODEL + BEST F HITS@50 BASELINE  HITS@S0 BEST
GAT { K} 50.32:£0.55 52.8740.87
GCN { Ky, K, K5} 51.3541.30 54.601.01
GraphSage {Ks} 50.330.68 51.39+1.23
MoNet {Ks 49.811.56 51.76:1.38
GatedGCN { K3} 51.0042.54 51.570.68
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Insights?

e By adding homcounts to the node labels before message passing, we get an
architecture that is at least as expressive as message passing
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Insights?

e By adding homcounts to the node labels before message passing, we get an
architecture that is at least as expressive as message passing

e Cycle counting seems to be important ;)
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GNNs can Count Homomorphisms - Implicitly




Practical problem

® 1-WL is sometimes not
expressive enough
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Practical problem

® 1-WL is sometimes not
expressive enough

® |n particular, it is insensitive to
the number of cycles

e 2-FWL is already impractical
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Contributions

A novel GNN architecture that is
parametrized by cycle length r that

e s efficient on sparse graphs

® can subgraph count all cycles of
lengthuptor

e can homomorphism count all
r-cactus graphs
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A glimpse at the implementation

\% . .
0/ ® Generalized message passing
over multiple sets of local

© “neighborhoods”
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Empirical results

Table 4: Normalized test MAE (]) on

graph regression,
rd

QMY dataset. Top three models as [15, [2nd], 319,
Model i «a €homo
1-GNN 0.493 0.78 0.00321
1-2-3-GNN 0476 0.27  0.00337
DTNN 0.244]  0.95  0.00388
Deep LRP 0.364  0.298  0.00254
PPGN 0.00276
NestedGNN 0.00265
12-GNN 0.00261
DRFWL GNN 0.00226!
5-(GIN 0.350 [0:217 [0:00205

+0.011 +0.025 +0.00005
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Empirical results

Table 4: Normalized test MAE (]) on
QM9 dataset. Top three models as 59,

graph regression,
L 3.

Model

7 a €homo

1-GNN

0.493  0.78  0.00321

1-2-3-GNN 0.476  0.27  0.00337

DTNN 0.244]  0.95  0.00388
Deep LRP 0.364  0.298  0.00254
PPGN 0.00276
NestedGNN 0.00265
12-GNN 0.00261
DRFWL GNN 0.00226!
5-(GIN 0.350 [0:217 [0:00205

+0.011 +0.025 +0.00005
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Table 3: Test MAE ({) oaph regression, ZINC dataset.
[219]

Top three models as [1%, [2"], 314,

Model ZINCI12K ZINC250K
GIN 0.163 +0.004  0.088 = 0.002
GCN 0.321 £ 0.009 -
GAT 0.384 + 0.007 -
GSN 0.115 + 0.012 -
CIN 0.079 +0.006  [0:022E10:002
NestedGNN 0.111+0.003  0.029 £ 0.001
SUN 0.083 £ 0.003 -
GNNAK+ 0.080 £ 0.001 -
12-GNN 0.083 £ 0.001
DRFWL GNN 0.025 + 0.003
SignNet 0.084 4 0.004  0.024 £ 0.003
HIMP 0.151 4 0.006  0.036 = 0.002
PathNN 0.090 + 0.004 -
5-(GIN 0.072£0.002  (0.022 £0.001]
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- s F-WL hierarchy
- the r-loopy WL test of eur?

How are they connected?

Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts 56/60



Open questions

We have seen different hierarchies of expressiveness
- increasing the size of F in
- s F-WL hierarchy
- the r-loopy WL test of (eurP

S 2024

How are they connected?
Can we collect most of our results in one architecture?
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Deep Homomorphism Networks

e Message passing can be
generalized to homomorphism
counting e

e \We have to use a node-weighted :
variant of homomorphisms,
though
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Deep Homomorphism Network Architecture
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Deep Homomorphism Network Architecture

e Homomorphism counts can be
weighted by the node weights

e Node weights can be computed
by learnable functions
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Deep Homomorphism Network Architecture

e Homomorphism counts can be . :

weighted Igy the node weights - ((('/”" €D - Tii(p‘,) Em S (o)
e Node weights can be computed 1

by learnable functions hstione
° Suitqble paﬁtern sets P allow to by (e Do f, v,/,,em,) o

obtain architectures as powerful "

as our previous examples F(“W ((F",/P) () _.?z?')

Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

58/60



Concluding Remarks



Concluding Remarks

e Homomorphism-based methods work well in theory and practice
(CML2023) (NeurlPS2025) (ECML/PKDD 2018)

Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts 60/60



Concluding Remarks

e Homomorphism-based methods work well in theory and practice
(CML2023) (NeurlPS2025) (ECML/PKDD 2018)

e Randomization yields expressive graph representations

(CML2023) (KDD2020) (PhD thesis 2019)

Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts 60/60



Concluding Remarks

e Homomorphism-based methods work well in theory and practice
(CML2023) (NeurlPS2025) (ECML/PKDD 2018)

e Randomization yields expressive graph representations

(CML2023) (KDD2020) (PhD thesis 2019)

® There is much more...

Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts 60/60



Concluding Remarks

e Homomorphism-based methods work well in theory and practice
(CML2023) (NeurlPS2025) (ECML/PKDD 2018)
e Randomization yields expressive graph representations
(CML2023) (KDD2020) (PhD thesis 2019)
® There is much more...
- Generalization bounds of GNNs using homomorphism counts

Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

60/60



Concluding Remarks

e Homomorphism-based methods work well in theory and practice
I[CML2023) (NeurlPS 2025) (ECML/PKDD 2018)

e Randomization yields expressive graph representations
ICML 2023 KDD 2020 Q’hU[hoswszmv

® There is much more...

- Generalization bounds of GNNs using homomorphism counts
- Intricate results linking homomorphism counting and the kR-WL test
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Concluding Remarks

e Homomorphism-based methods work well in theory and practice
I[CML2023) (NeurlPS 2025) (ECML/PKDD 2018)

e Randomization yields expressive graph representations
|CML 2023 KDD 2020, Q’hDHoswszmg
e There is much more...

- Generalization bounds of GNNs using homomorphism counts
- Intricate results linking homomorphism counting and the kR-WL test

- Homomorphism bases (aka spasms) of patterns allow to compute and learn(!) very
powerful graph invariants
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