Explanation Generation in Applications of Answer Set Programming

Esra Erdem

Sabanci University, Istanbul, Turkiye

COST DigForASP, TU Wien, January 27, 2023

《曰》 《聞》 《臣》 《臣》 三臣 …

Answer Set Programming (ASP)

- Declarative programming paradigm.
- Theoretical basis: answer set semantics (Gelfond and Lifschitz, 1988)
- Expressive representation languages: Defaults, recursive definitions, aggregates, preferences, etc.
- ASP solvers: DLV (University of Calabria), CLINGO (University of Potsdam)
- Applications: planning, learning, multi-agent systems, natural language understanding, robotics, bioinformatics, systems biology, VLSI design, historical linguistics, game theory, e-tourism, etc.

Erdem, Gelfond, Leone: Applications of Answer Set Programming. Al Magazine 37(3): 53-68 (2016)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

• Programs consist of rules of the form

 $Head \leftarrow A_1, \ldots, A_m, not A_{m+1}, \ldots, not A_n$

where each A_i is a propositional atom, and *Head* is a propositional atom or \perp .

• A rule is called a *fact* if m = n = 0, and a *constraint* if *Head* is \perp .

Program	Answer sets
$p \leftarrow not q$	{ p }
$p \leftarrow not q$	$\{p\}, \{q\}$
$q \leftarrow not p$	
$p \leftarrow not q$	
$q \leftarrow not p$	$\{p, r\}, \{q, r\}$
$\begin{vmatrix} r \leftarrow p \\ r \leftarrow q \end{vmatrix}$	
$r \leftarrow q$	

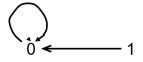
A.

문 🕨 🖈 문

æ

Program	Answer sets
$p \leftarrow not q$	$\{p\}, \{q\}$
$q \leftarrow not p$	
$p \leftarrow not q$	
$q \leftarrow not p$	{ p }
$ \leftarrow q$	
$p \leftarrow not q$	
$q \leftarrow not p$	$\{ oldsymbol{q} \}$
\leftarrow not q	

ъ


æ

Choice Rules and Cardinality Constraints

Program	Answer sets
$\{p,q\} \leftarrow$	$\{\}, \{p\}, \{q\}, \{p, q\}$
$1\{p,q\} \leftarrow$	$\{p\}, \{q\}, \{p, q\}$
$\{p,q\}1 \leftarrow$	$\{\}, \{p\}, \{q\}$
$1\{p,q\}1 \leftarrow$	$\{p\}, \{q\}$

3 1 4 3

Example: Checking Reachability

Program:

```
edge(0,0) \leftarrow

edge(1,0) \leftarrow

reachable(x,y) \leftarrow edge(x,y)

reachable(x,y) \leftarrow edge(x,z), reachable(z,y)
```

Answer set:

 $\{edge(0,0), edge(1,0), reachable(0,0), reachable(1,0)\}$

(日)

The basic idea is

- to represent the given problem by a program,
- to find answer sets for the program using an ASP solver, and
- to extract the solutions from the answer sets.

Example: Graph Coloring Problem

Given a set $C = \{C_1, ..., C_n\}$ of colors and a graph $G = \langle V, E \rangle$, decide whether there exists an assignment of colors in *C* to vertices in *V* such that:

- every vertex in V is assigned to exactly one color,
- no two adjacent vertices are assigned to the same color.

Generate: assign exactly one color to every vertex.

 $1\{assign(v, C_1), \dots, assign(v, C_n)\}1 \leftarrow vertex(v)$ $(v \in V)$

Test: ensure that no two adjacent vertices have the same color.

 $\leftarrow \textit{assign}(v, c), \textit{assign}(v', c), \textit{edge}(v, v') \qquad (v \neq v')$

A solution can be computed using an ASP solver:

 $\{assign(1, C1), assign(2, C3), \ldots\}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Explanation Generation in Three Applications of ASP

- Generating explanations for complex biomedical queries
- Explanation generation for multi-agent path finding
- Explainable robotic plan execution monitoring

Explanation Generation in Three Applications of ASP

- Generating explanations for complex biomedical queries
- Explanation generation for multi-agent path finding
- Explainable robotic plan execution monitoring

Biomedical Query Answering and Explanation Generation

- Biomedical data is stored in various structured forms and at different locations.
- With the current Web technologies, reasoning over these data is limited to answering simple queries by keyword search and by some direction of humans.
- Vital research, like drug discovery, requires high-level reasoning.

- 170

글 제 제 글 제

Drug Target 1 Drug Target 1 Name	Alpha-1A adrenergic receptor
Drug Target 1 Synonyms	Alpha 1A-adrenoceptor Alpha 1A-adrenoreceptor Alpha 1A-adrenoreceptor Alpha adrenergic receptor Alpha adrenergic receptor 1c
Drug Target 1 Gene Name	ADRA1A

(日)

Drug Target 2 Name	Beta-1 adrenergic receptor	
Drug Target 2 Synonyms	1. Beta-1 adrenoceptor 2. Beta-1 adrenoreceptor	
Drug Target 2 Gene Name	ADRB1	

イロト イ理ト イヨト イヨト

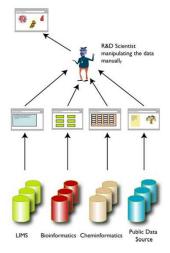
Drug Target 3 Name	Beta-2 adrenergic receptor
Drug Target 3 Synonyms	1. Beta-2 adrenoceptor 2. Beta-2 adrenoreceptor
Drug Target 3 Gene Name	ADRB2

What are the genes that interact with the gene DLG4?

< E

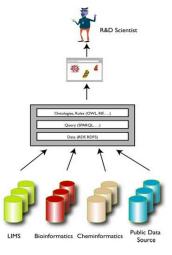
What are the genes that interact with the gene DLG4?

A (1) > A (2) > A (2) > A


What are the genes that interact with the gene DLG4?

< ロ > < 団 > < 団 > < 団 > < 団 > <</p>

Complex Queries


What are the genes that are targeted by the drug Epinephrine and that interact with the gene DLG4?

A 3 > 1

Our goal is...

... to extract relevant parts of the knowledge resources, integrate them, answer the queries efficiently, and generate explanations.

4 3 3

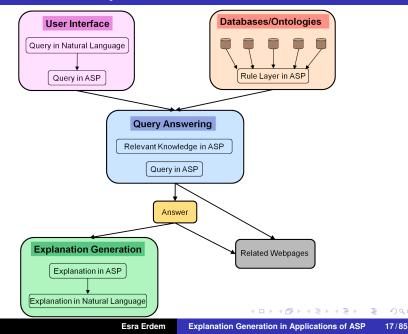
- What are the genes that are targeted by the drug Epinephrine and that interact with the gene DLG4?
- What are the genes that are targeted by all the drugs that belong to the category Hmg-coa reductase inhibitors?
- What are the drugs that treat the disease Depression and that do not target the gene ACYP1?
- What are the cliques of 5 genes, that contain the gene DLG4?
- What are the genes that are related to the gene ADRB1 via a gene-gene relation chain of length at most 3?
- What are the 3 most similar genes that are targeted by the drug Epinephrine?

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ◆□ ● ◇◇◇

- It is hard to represent a query in a formal language.
- 2 Databases/ontologies are in different formats/locations.
- Omplex queries require recursive definitions, aggregates, etc.
- Oatabases/ontologies are large.
- S Experts may ask for further explanations.

Ξ.

- It is hard to represent a query in a formal language.
 - Represent queries in a controlled natural language.
- 2 Databases/ontologies are in different formats/locations.
- Omplex queries require recursive definitions, aggregates, etc.
- Oatabases/ontologies are large.
- S Experts may ask for further explanations.


- It is hard to represent a query in a formal language.
 - Represent queries in a controlled natural language.
- 2 Databases/ontologies are in different formats/locations.
 - Integrate different sources via a rule layer in ASP.
- Omplex queries require recursive definitions, aggregates, etc.
- Oatabases/ontologies are large.
- S Experts may ask for further explanations.

- It is hard to represent a query in a formal language.
 - Represent queries in a controlled natural language.
- 2 Databases/ontologies are in different formats/locations.
 - Integrate different sources via a rule layer in ASP.
- Somplex queries require recursive definitions, aggregates, etc.
 - Represent queries as ASP programs.
- Oatabases/ontologies are large.
- S Experts may ask for further explanations.

- It is hard to represent a query in a formal language.
 - Represent queries in a controlled natural language.
- 2 Databases/ontologies are in different formats/locations.
 - Integrate different sources via a rule layer in ASP.
- Omplex queries require recursive definitions, aggregates, etc.
 - Represent queries as ASP programs.
- Oatabases/ontologies are large.
 - Extract the relevant part for faster reasoning.
- S Experts may ask for further explanations.

- It is hard to represent a query in a formal language.
 - Represent queries in a controlled natural language.
- 2 Databases/ontologies are in different formats/locations.
 - Integrate different sources via a rule layer in ASP.
- Omplex queries require recursive definitions, aggregates, etc.
 - Represent queries as ASP programs.
- Oatabases/ontologies are large.
 - Extract the relevant part for faster reasoning.
- S Experts may ask for further explanations.
 - Generate shortest explanations.

BIOQUERY-ASP: System Overview

BIOQUERY-CNL*: A CNL for biomedical queries

- We consider queries in a specific domain, namely biomedicine, and over specific sources of information, namely biomedical ontologies.
- We design a CNL (BIOQUERY-CNL*) for representing biomedical queries, and develop an algorithm to transform it into ASP.
- This allows us to use ASP systems to find answers to queries expressed in BIOQUERY-CNL*.

Erdem, Yeniterzi: Transforming Controlled Natural Language Biomedical Queries into Answer Set Programs. BioNLP@HLT-NAACL 2009.

(日本)(日本)(日本)(日本)

BIOQUERY-CNL* Grammar:

QUERY \rightarrow WhatQUERY QUESTIONMARK WHATQUERY \rightarrow What are OFRELATION NESTEDPREDICATERELATION OFRELATION \rightarrow Noun() of Type() NESTEDPREDICATERELATION \rightarrow (...)* that PREDICATERELATION PREDICATERELATION \rightarrow INSTANCERELATION (...)* INSTANCERELATION \rightarrow (NEG)? Verb() the Type() Instance() QUESTIONMARK \rightarrow ?

Ontology functions:

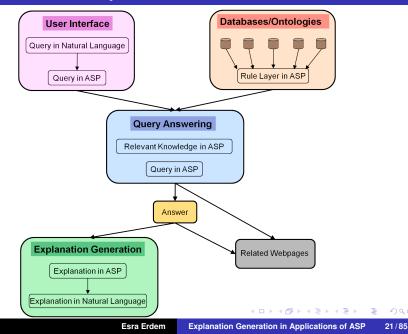
Type() returns the type information, e.g., gene, disease, drug *Instance*(*T*) returns instances of the type *T*, e.g., Asthma for type disease *Verb*(*T*, *T'*) returns the verbs where type *T* is the subject and type *T'* is the object, e.g., drug treat disease

Noun(T) returns the nouns that are related to the type T, e.g., side-effects of type drug

Example: What are the side-effects of the drugs that treat the disease Asthma?

Query in BIOQUERY-CNL*: What are the genes that are targeted by all the drugs that belong to the category Hmg-coa reductase inhibitors?

Query in ASP:


 $notcommon(gn_1) \leftarrow not drug_gene(d_2, gn_1), condition_1(d_2)$ $condition_1(d) \leftarrow drug_category(d, "Hmg - coa reductase inhibitors")$

what_be_genes(gn_1) \leftarrow not notcommon(gn_1), notcommon_exists notcommon_exists \leftarrow notcommon(x)

answer_exists \leftarrow what_be_genes(gn)

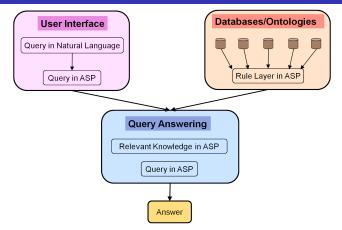
- ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ● ● のへの

BIOQUERY-ASP: System Overview

Extraction and Integration of Knowledge using ASP

Knowledge from RDF(S)/OWL ontologies can be extracted using "external predicates" supported by the ASP solver DLVHEX:

 $\begin{array}{l} \textit{triple_gene}(x,y,z) \leftarrow \&\textit{rdf}[``URI\textit{forGeneOntology''}](x,y,z) \\ \textit{gene_gene}(g_1,g_2) \leftarrow \textit{triple_gene}(x,``\textit{geneproperties}:\textit{name''},g_1), \\ \textit{triple_gene}(x,``\textit{geneproperties}:\textit{related_genes''},b), \dots \end{array}$


ASP rules integrate the extracted knowledge, or define new concepts:

 $gene_reachable_from(x, 1) \leftarrow gene_gene(x, y), start_gene(y)$ $gene_reachable_from(x, n + 1) \leftarrow gene_gene(x, z),$ $gene_reachable_from(z, n), max_chain_length(l) \quad (0 < n, n < l)$

Erdogan et al.: Querying Biomedical Ontologies in Natural Language using Answer Set Programming. SWAT4LS 2010.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Query Answering in ASP

- Generally, only a small part of the underlying databases and the rule layer is related to the given query.
- We introduce a method to identify the relevant part of the ASP program for more efficient query answering.

Underlying databases as facts: $gene_gene(G1, G2) \leftarrow$ $gene_gene(G2, G3) \leftarrow$ $drug_drug(D1, D2) \leftarrow$ $drug_drug(D2, D3) \leftarrow$

Rule layer:

 $\begin{array}{l} gene_gene(g_1,g_2) \leftarrow gene_gene(g_2,g_1)\\ gene_related_gene(g_1,g_2) \leftarrow gene_gene(g_1,g_2)\\ gene_related_gene(g_1,g_3) \leftarrow gene_related_gene(g_1,g_2), gene_gene(g_2,g_3)\\ drug_drug(d_1,g_2) \leftarrow drug_drug(d_2,d_1)\\ drug_related_drug(g_1,g_2) \leftarrow drug_drug(d_1,d_2)\\ drug_related_drug(g_1,g_3) \leftarrow drug_related_drug(d_1,d_2), drug_drug(d_2,d_3) \end{array}$

Query: What are the genes that are related to gene G1? $what_be_genes(g) \leftarrow gene_related_gene(g, G1)$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ◆□ ● ◇◇◇

Underlying databases as facts:

 $\begin{array}{lll} gene_gene(G1,G2) \leftarrow & gene_gene(G2,G3) \leftarrow \\ drug_drug(D1,D2) \leftarrow & drug_drug(D2,D3) \leftarrow \end{array}$

Rule layer:

 $gene_gene(g_1, g_2) \leftarrow gene_gene(g_2, g_1)$ $gene_related_gene(g_1, g_2) \leftarrow gene_gene(g_1, g_2)$ $gene_related_gene(g_1, g_3) \leftarrow gene_related_gene(g_1, g_2), gene_gene(g_2, g_3)$ $drug_drug(d_1, g_2) \leftarrow drug_drug(d_2, d_1)$ $drug_related_drug(g_1, g_2) \leftarrow drug_drug(d_1, d_2)$ $drug_related_drug(g_1, g_3) \leftarrow drug_related_drug(d_1, d_2), drug_drug(d_2, d_3)$

Query: What are the genes that are related to gene G1? $what_be_genes(g) \leftarrow gene_related_gene(g, G1)$

Identifying the relevant part improves the computational time up to 100 times.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ● ○ ○ ○

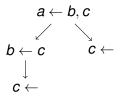

Theorem 1

Let Π be a stratified normal program, Q be a general program. Then $Rel_{\Pi,Q}$ is the relevant part of Π with respect to Q.

Erdem et al.: Finding Answers and Generating Explanations for Complex Biomedical Queries. AAAI 2011.

(日)

BIOQUERY-ASP: System Overview



ASP program Π:

$$egin{array}{l} \leftarrow b,c \ a \leftarrow d \ d \leftarrow \ b \leftarrow c \ c \leftarrow \end{array}$$

An answer set X for Π : {a, b, c, d}

An explanation for a wrt Π and X:

3 1 4 3 1

크

ASP program Π :

$$a \leftarrow b, c$$

 $a \leftarrow d$
 $d \leftarrow$
 $b \leftarrow c$
 $c \leftarrow$

An answer set X for Π : {a, b, c, d}

Another explanation for a wrt Π and X:

$$egin{array}{c} a \leftarrow a \ \downarrow \ d \leftarrow \end{array}$$

-

크

ASP program Π:

$$egin{array}{l} \leftarrow b,c \ a \leftarrow d \ d \leftarrow \ b \leftarrow c \ c \leftarrow \end{array}$$

An answer set X for Π : {a, b, c, d}

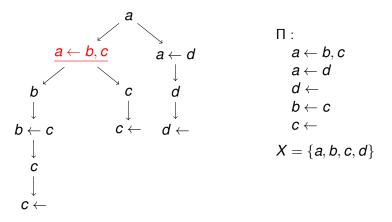
<回><モン<

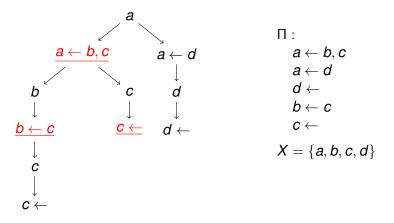
3

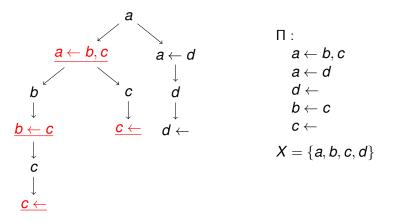
Supports

A rule r supports an atom p using atoms in Y but not in Z, if the following hold:

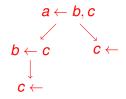
$$egin{aligned} \mathcal{H}(r) &= \mathcal{p}, \ \mathcal{B}^+(r) &\subseteq Y ackslash Z, \ \mathcal{B}^-(r) &\cap Y &= \emptyset, \ Y &\models \mathcal{B}_{card}(r). \end{aligned}$$

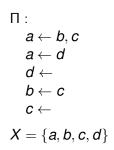

Example:


The rule


$$a \leftarrow d, 1 \leq \{b, c\} \leq 2, \textit{not e}$$

supports the atom *a* with respect to $Y = \{a, b, c, d, f\}$ but $Z = \{f\}$.



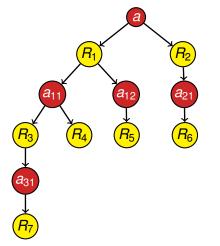


An explanation for atom a with respect to Π and X:

▲□ → ▲ □ → ▲ □ → □

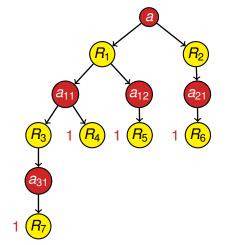
Ξ.

An explanation for atom a with respect to Π and X:

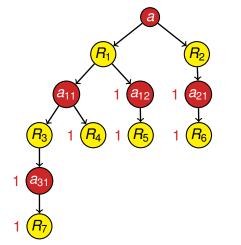

 $egin{array}{c} a \leftarrow d, 1 \leq \{b, c\} \leq 2 \ \downarrow \ d \leftarrow \end{array}$

$$\begin{array}{l} \Pi:\\ a\leftarrow d, \, not \, b\\ a\leftarrow d, 1\leq \{b,c\}\leq 2\\ d\leftarrow\\ b\leftarrow c\\ c\leftarrow\\ X=\{a,b,c,d\} \end{array}$$

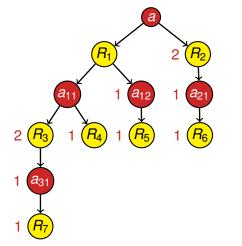
▲御▶ ▲ 理▶ ▲ 理▶


æ

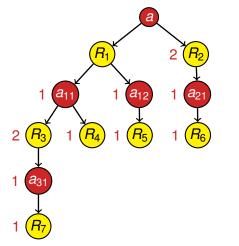
• $W(a) = min_{c \in child(a)}(W(c))$ • $W(r) = \sum_{c \in child(r)} W(c) + 1$

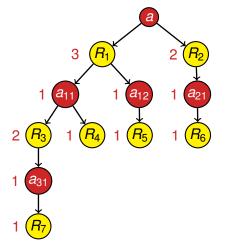

문 > · · 문 > · · 문

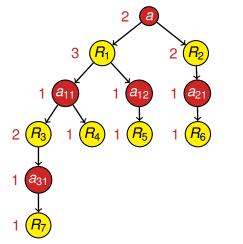
• $W(a) = min_{c \in child(a)}(W(c))$ • $W(r) = \sum_{c \in child(r)} W(c) + 1$

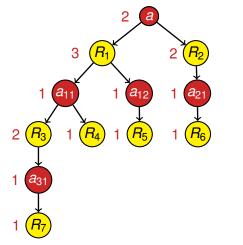


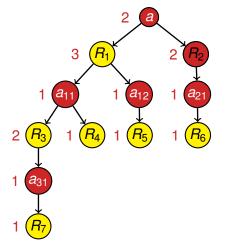
★ 문 → 문

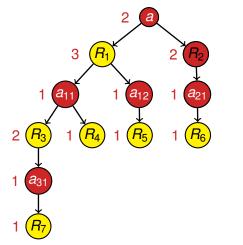

• $W(a) = min_{c \in child(a)}(W(c))$ • $W(r) = \sum_{c \in child(r)} W(c) + 1$

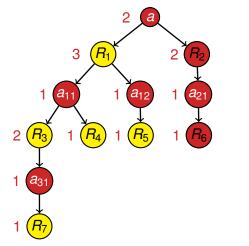

• $W(a) = min_{c \in child(a)}(W(c))$ • $W(r) = \sum_{c \in child(r)} W(c) + 1$


• $W(a) = min_{c \in child(a)}(W(c))$ • $W(r) = \sum_{c \in child(r)} W(c) + 1$


• $W(a) = min_{c \in child(a)}(W(c))$ • $W(r) = \sum_{c \in child(r)} W(c) + 1$


• $W(a) = min_{c \in child(a)}(W(c))$ • $W(r) = \sum_{c \in child(r)} W(c) + 1$


• $W(a) = min_{c \in child(a)}(W(c))$ • $W(r) = \sum_{c \in child(r)} W(c) + 1$

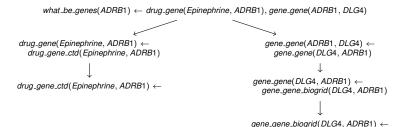

• $W(a) = min_{c \in child(a)}(W(c))$ • $W(r) = \sum_{c \in child(r)} W(c) + 1$

• $W(a) = min_{c \in child(a)}(W(c))$ • $W(r) = \sum_{c \in child(r)} W(c) + 1$

• $W(a) = min_{c \in child(a)}(W(c))$ • $W(r) = \sum_{c \in child(r)} W(c) + 1$

Theorem 2

Let Π be a normal ASP program, X be an answer set for Π and p be an atom in X. Our algorithm generates a shortest explanation for p with respect to Π and X.


Erdem, Oztok: Generating explanations for biomedical queries. TPLP 2015.

Example: Explanation Generation

Query in BIOQUERY-CNL*: What are the genes that are targeted by the drug Epinephrine and that interact with the gene DLG4?

An Answer: ADRB1

Shortest Explanation in ASP:

Explanation in Natural Language:

The drug Epinephrine targets the gene ADRB1 according to CTD. The gene DLG4 interacts with the gene ADRB1 according to BioGrid.

・ロット (母) ・ ヨ) ・ コ)

-

Query in BIOQUERY-CNL*: What are the drugs that treat the disease Asthma or that react with the drug Epinephrine?

Answer: Doxepin

Explanation:

what_be_drugs("Doxepin") :- drug_drug("Doxepin", "Epinephrine").

drug_drug("Doxepin", "Epinephrine") :- drug_drug("Epinephrine", "Doxepin").

drug_drug_drug_drug_drugbank("Epinephrine", "Doxepin") :- drug_drug_drugbank("Epinephrine", "Doxepin").

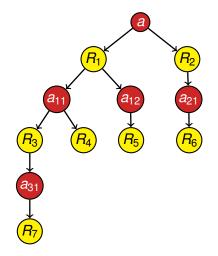
drug_drug_drugbank("Epinephrine", "Doxepin").

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● の Q @

Query in BIOQUERY-CNL*: What are the drugs that treat the disease Asthma or that react with the drug Epinephrine?

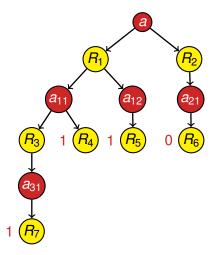
Answer: Doxepin

Another Explanation:

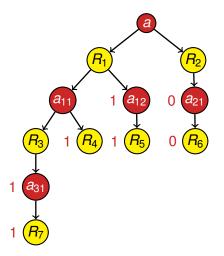

```
what_be_drugs("Doxepin") :- drug_disease("Doxepin","Asthma").
    drug_disease("Doxepin","Asthma") :- drug_disease_ctd("Doxepin","Asthma").
    drug_disease_ctd("Doxepin","Asthma").
```

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● の Q @

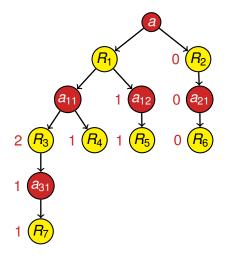
- Let Z be a set of (previously computed) explanations and S be a (to be computed) explanation.
- Let R_Z and R_S be the rule vertices contained in Z and S.
- The distance function Δ_D between Z and S is defined as follows.


 $\Delta_D(Z,S) = |R_S \backslash R_Z|$

• $W_{T,R}(a) = max_{c \in child(a)}(W_{T,R}(c))$ • $W_{T,R}(r) = \sum_{c \in child(r)} W_{T,R}(c)$ if $r \in R$ • $W_{T,R}(r) = 1 + \sum_{c \in child(r)} W_{T,R}(c)$ if $r \notin R$ $R = \{R_2, R_6\}$

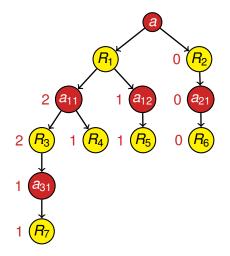

2

• $W_{T,R}(a) = max_{c \in child(a)}(W_{T,R}(c))$ • $W_{T,R}(r) = \sum_{c \in child(r)} W_{T,R}(c)$ if $r \in R$ • $W_{T,R}(r) = 1 + \sum_{c \in child(r)} W_{T,R}(c)$ if $r \notin R$ $R = \{R_2, R_6\}$

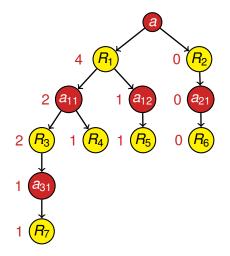


★ 문 → 문

• $W_{T,R}(a) = max_{c \in child(a)}(W_{T,R}(c))$ • $W_{T,R}(r) = \sum_{c \in child(r)} W_{T,R}(c)$ if $r \in R$ • $W_{T,R}(r) = 1 + \sum_{c \in child(r)} W_{T,R}(c)$ if $r \notin R$ $R = \{R_2, R_6\}$



• $W_{T,R}(a) = max_{c \in child(a)}(W_{T,R}(c))$ • $W_{T,R}(r) = \sum_{c \in child(r)} W_{T,R}(c)$ if $r \in R$ • $W_{T,R}(r) = 1 + \sum_{c \in child(r)} W_{T,R}(c)$ if $r \notin R$ $R = \{R_2, R_6\}$


< E> E

• $W_{T,R}(a) = max_{c \in child(a)}(W_{T,R}(c))$ • $W_{T,R}(r) = \sum_{c \in child(r)} W_{T,R}(c)$ if $r \in R$ • $W_{T,R}(r) = 1 + \sum_{c \in child(r)} W_{T,R}(c)$ if $r \notin R$ $R = \{R_2, R_6\}$

< E> E

• $W_{T,R}(a) = max_{c \in child(a)}(W_{T,R}(c))$ • $W_{T,R}(r) = \sum_{c \in child(r)} W_{T,R}(c)$ if $r \in R$ • $W_{T,R}(r) = 1 + \sum_{c \in child(r)} W_{T,R}(c)$ if $r \notin R$ $R = \{R_2, R_6\}$

< E → E

- $W_{T,R}(a) = max_{c \in child(a)}(W_{T,R}(c))$ • $W_{T,R}(r) = \sum_{c \in child(r)} W_{T,R}(c)$ if $r \in R$ • $W_{T,R}(r) = 1 + \sum_{c \in child(r)} W_{T,R}(c)$ if $r \notin R$ $R = \{R_2, R_6\}$
 - $\stackrel{2}{\leftarrow} R = 2 \stackrel{2}{\xrightarrow{R_3}} 1 \stackrel{1}{\xrightarrow{R_4}} 1 \stackrel{1}{\xrightarrow{R_5}} 1 \stackrel{1}{\xrightarrow{R_3}} 1 \stackrel{1}{\xrightarrow{R_4}} 1 \stackrel{1}{\xrightarrow{R_5}} 1 \stackrel{1}{\xrightarrow{R_3}} 1 \stackrel{1}{$

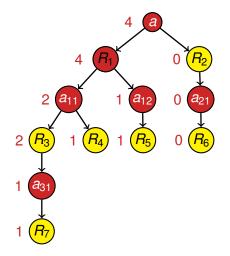
4

4 a

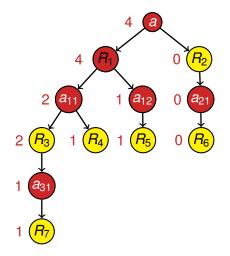
0 a₂₁

 R_{6}

- $W_{T,R}(a) = max_{c \in child(a)}(W_{T,R}(c))$ • $W_{T,R}(r) = \sum_{c \in child(r)} W_{T,R}(c)$ if $r \in R$ • $W_{T,R}(r) = 1 + \sum_{c \in child(r)} W_{T,R}(c)$ if $r \notin R$ $R = \{R_2, R_6\}$
 - $R = 2 \begin{pmatrix} a_{11} \\ R_{3} \end{pmatrix} 1 \begin{pmatrix} a_{12} \\ R_{4} \end{pmatrix} 1 \begin{pmatrix} a_{12} \\ R_{5} \end{pmatrix} 1 \begin{pmatrix} a_{13} \\ R_{4} \end{pmatrix} 1 \begin{pmatrix} a_{12} \\ R_{5} \end{pmatrix}$

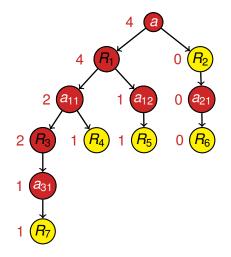

4

4 a

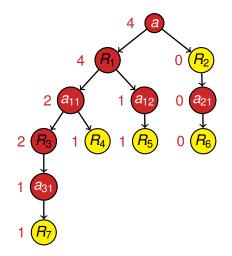

0 a₂₁

 R_{6}

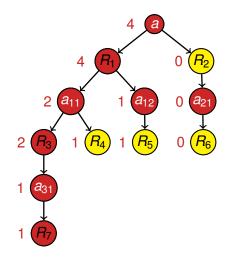
• $W_{T,R}(a) = max_{c \in child(a)}(W_{T,R}(c))$ • $W_{T,R}(r) = \sum_{c \in child(r)} W_{T,R}(c)$ if $r \in R$ • $W_{T,R}(r) = 1 + \sum_{c \in child(r)} W_{T,R}(c)$ if $r \notin R$ $R = \{R_2, R_6\}$



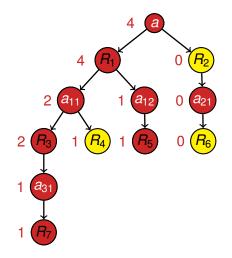
• $W_{T,R}(a) = max_{c \in child(a)}(W_{T,R}(c))$ • $W_{T,R}(r) = \sum_{c \in child(r)} W_{T,R}(c)$ if $r \in R$ • $W_{T,R}(r) = 1 + \sum_{c \in child(r)} W_{T,R}(c)$ if $r \notin R$ $R = \{R_2, R_6\}$



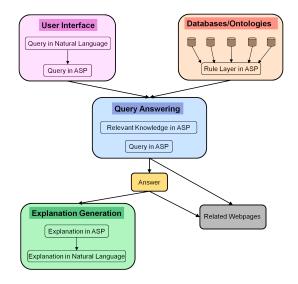
< E > E


• $W_{T,R}(a) = max_{c \in child(a)}(W_{T,R}(c))$ • $W_{T,R}(r) = \sum_{c \in child(r)} W_{T,R}(c)$ if $r \in R$ • $W_{T,R}(r) = 1 + \sum_{c \in child(r)} W_{T,R}(c)$ if $r \notin R$ $R = \{R_2, R_6\}$

- $W_{T,R}(a) = max_{c \in child(a)}(W_{T,R}(c))$ • $W_{T,R}(r) = \sum_{c \in child(r)} W_{T,R}(c)$ if $r \in R$ • $W_{T,R}(r) = 1 + \sum_{c \in child(r)} W_{T,R}(c)$ if $r \notin R$
- $W_{T,R}(r) = 1 + \sum_{c \in child(r)} W_{T,R}(c)$ $R = \{R_2, R_6\}$



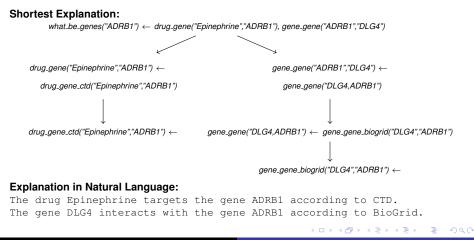
- $W_{T,R}(a) = max_{c \in child(a)}(W_{T,R}(c))$ • $W_{T,R}(r) = \sum_{c \in child(r)} W_{T,R}(c)$ if $r \in R$ • $W_{T,R}(r) = 1 + \sum_{c \in child(r)} W_{T,R}(c)$ if $r \notin R$
- $\textit{R} = \{\textit{R}_2,\textit{R}_6\}$



• $W_{T,R}(a) = max_{c \in child(a)}(W_{T,R}(c))$ • $W_{T,R}(r) = \sum_{c \in child(r)} W_{T,R}(c)$ if $r \in R$ • $W_{T,R}(r) = 1 + \sum_{c \in child(r)} W_{T,R}(c)$ if $r \notin R$

 $\textit{R} = \{\textit{R}_2,\textit{R}_6\}$

BIOQUERY-ASP



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Representing Explanations in Natural Language

Query: What are the genes that are targeted by the drug Epinephrine and that interact with the gene DLG4?

Answer: ADRB1

- Debugging in ASP: (Brain and DeVos 2005, Syrjanen 2006, Gebser et al. 2008, Oetsch et al. 2010)
- Generating justifications: (Pontelli et al. 2009, Schulz and Toni 2016, Cabalar et al. 2014).

Theorem 3

For every offline justification of an atom p, there is an explanation of p. For every explanation of an atom p, there is an offline justification of p in the reduct of the program with respect to given answer set.

Erdem, Oztok: Generating explanations for biomedical queries. TPLP 2015.

Explanation Generation in Three Applications of ASP

- Generating explanations for complex biomedical queries
- Explanation generation for multi-agent path finding
- Explainable robotic plan execution monitoring

Multi-Agent Path Finding Problems

- Multi-Agent Path Finding (MAPF) Problem
 - Finding a plan for each agent in an environment, without collisions
 - Constraints on plan length
- Optimization Variants
 - Minimizing maximum makespan, total plan length
- MAPF and its optimization variants are intractable (Ratner and Warmuth, 1986).
- Robotics, video games, autonomous aircraft towing vehicles, traffic control, autonomous warehouse systems.

- A flexible AI method developed to solve a problem can accommodate variations of the problem.
- Some of our studies focus on finding a general framework that is flexible for variations of MAPF:
 - Multi-Agent Path Finding (MAPF)
 - Dynamic Multi-Agent Path Finding (D-MAPF)
 - Multi-Modal Multi-Agent Path Finding with Optimal Resource Utilization (MMAPF)

Erdem et al.: A general formal framework for pathfinding problems with multiple agents. AAAI 2013. Bogatarkan et al.: A declarative method for dynamic MAPF. GCAI 2019. Bogatarkan et al.: Multi-modal MAPF with optimal resource utilization. AMP 2020.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ● ○ ○ ○

- An explainable AI method can provide answers to queries about the (in)feasibility and the optimality of solutions.
- We introduce a method for generating explanations for queries regarding
 - feasibility and optimality of solutions
 - nonexistence of solutions
 - observations about solutions

for a general variation of MAPF.

Multi-Modal Multi-Agent Path Finding with Optimal Resource Utilization (MMAPF)

MMAPF is a variant of MAPF that takes into account realistic conditions in the warehouses that are not addressed by MAPF:

- *Resources:* Battery levels of the robots decrease while moving and may need charging.
- Multi-Modality: Robots may need to move slowly due to tight passages or humans.
- Waypoints: Robots may need to visit several locations along their paths.
- *Optimizations:* Makespan, sum of costs, number of charging batteries

Bogatarkan et al.: Multi-modal MAPF with optimal resource utilization. AMP 2020.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Query-Based Explanation Generation Using Counterfactuals

- We consider queries about optimality of solutions, as well as observations about these solutions.
- Explanations generated by means of queries...
 - Why does an agent wait too long at a location?
 - Why does an agent take a longer path?
 - Why does an agent charge many times?
 - ...using counterfactuals:
 - What would happen, if the agent waited shorter?
 - What would happen, if the agent took a shorter path?
 - What would happen, if the agent charged less?
- Together with the explanations, some recommendations are also given.

"There is a better solution with shorter plan length."

2

Query-Based Explanation Generation Using Violations

• We also consider the infeasibility of solutions.

"Why does not the instance have a solution?"

- Explanations are generated by identifying violations of constraints.
- If a solution is infeasible, an explanation regarding infeasibility or nonoptimality is provided.

"There is no solution because the robot collides with an obstacle."

Explanations may include suggestions.

"We suggest removing the obstacle, if it is possible to change the infrastructure."

- Queries about waiting (QW1-QW4)
 Why does not Agent a wait at location x at time s for less than n steps?
- Queries about charging (QC1-QC4)
 Why does Agent a charge at location x (at any time)?
- Queries about traversals (QP1-QP5)
 Why does not Agent a have a plan whose length is less than 1?
- Query about nonexistence of a solution (QU)
 Why does not the instance have a solution?

э.

Our Query-Based Explanation Generation Algorithm

Input : a **mMAPF** instance, a plan for this instance, and a guery *q* of type QW1-QU Output: An explanation aueries // Suppose that Π denotes the **mMAPF** program, possibly augmented with some hard constraints due to previous queries if query q is of type QW1-QP5 then $\Pi_h \leftarrow \text{Add the relevant hard constraint for } q \text{ to the mMAPF}$ program **Π** if Π_{h} has an answer set X then Display an explanation, presenting an alternative (better/worse) solution end else $\Pi_w \leftarrow \text{Replace the mMAPF constraints in } \Pi_h \text{ relevant for } q$, with the corresponding rules and weak constraints $Y \leftarrow \text{Compute an answer set for } \Pi_w$ Display an explanation based on violations end end else // query q is of type QU $\Pi_{w} \leftarrow \text{Replace the mMAPF constraints in } \Pi$ with the corresponding rules and weak constraints $Y \leftarrow \text{Compute an answer set for } \prod_{w}$ Display an explanation based on violations end

< 3 >

Our Query-Based Explanation Generation Algorithm

```
Input : a mMAPF instance, a plan for this instance, and a query q
          of type QW1-QU
Output: An explanation
// Suppose that \Pi denotes the mMAPF program, possibly augmented
 with some hard constraints due to previous queries
if avery a is of type QW1-QP5 then
    \Pi_b \leftarrow \text{Add the relevant hard constraint for } q \text{ to the mMAPF}
                                                                                 counterfactuals
     program \Pi
    if \Pi_h has an answer set X then
        Display an explanation, presenting an alternative
          (better/worse) solution
    end
    else
        \Pi_w \leftarrow \text{Replace the mMAPF} constraints in \Pi_h relevant for q,
          with the corresponding rules and weak constraints
        Y \leftarrow \text{Compute an answer set for } \Pi_w
        Display an explanation based on violations
    end
end
else
    // query q is of type QU
    \Pi_{w} \leftarrow \text{Replace the mMAPF constraints in } \Pi with the
     corresponding rules and weak constraints
    Y \leftarrow \text{Compute an answer set for } \Pi_w
    Display an explanation based on violations
end
```

A (10) A (10) A (10)

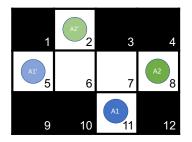
- QC1 Why does Agent a charge at location x (at any time)? What would happen if Agent a does not charge at location x?
 - :- batteryLevel(a,T+1,b), plan(a,T,x), charging(x).
- QP1 Why does not Agent a have a plan whose length is less than 1? What would happen if Agent a has a plan with length at least 1?
 - :- planLength(a,L), L>=1.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Our Query-Based Explanation Generation Algorithm

Input : a mMAPF instance, a plan for this instance, and a query q	
of type QW1-QU	
Output : An explanation	
// Suppose that Π denotes the mMAPF program, possibly augmented	
with some hard constraints due to previous queries	
if query q is of type $QW1-QP5$ then	
$\Pi_h \leftarrow \text{Add the relevant hard constraint for } q \text{ to the mMAPF}$	
рrogram П	
if Π_h has an answer set X then	
Display an explanation, presenting an alternative	suggestions
(better/worse) solution	suggestions
end	
else	
$\Pi_w \leftarrow \text{Replace the } \mathbf{mMAPF}$ constraints in Π_h relevant for q ,	
with the corresponding rules and weak constraints	
$Y \leftarrow \text{Compute an answer set for } \Pi_w$	
Display an explanation based on violations	
end	
end	
else	
// query q is of type QU	
$\Pi_w \leftarrow \text{Replace the } \mathbf{mMAPF}$ constraints in Π with the	
corresponding rules and weak constraints	
$Y \leftarrow \text{Compute an answer set for } \Pi_w$	
Display an explanation based on violations	
end	

æ


QC1 Why does Agent a charge at location x (at any time)?

Actually, Agent a does not have to charge at location x (at any time). Here is an alternative plan: ...

QP1 Why does not Agent a have a plan whose length is less than 1?

Actually, Agent a can follow a shorter path whose length is smaller than 1. Here is an alternative plan: ...

An Example Scenario for QW1

Time	A1 Location	A2 Location
0	11	8
1	7	8
2	6	7
3	5	6
4	-	2

- User asks the query of type QW1: "Why does Robot 2 wait at Cell 8 (at any time)?"
- The algorithm gives the following explanation: "Actually, Robot 2 does not have to wait at Cell 8 from time step 0 to 2. Here is an alternative optimal plan: ..."

Our Query-Based Explanation Generation Algorithm

Esra Erdem Explanation Generation in Applications of ASP			
end		ヨト	
Di	splay an explanation based on violations		
	\leftarrow Compute an answer set for Π_w		
	orresponding rules and weak constraints	violations	
	$\mu \leftarrow$ Replace the mMAPF constraints in Π with the		
	query q is of type QU		
else			
end			
en	Display an explanation based on violations d		
	$Y \leftarrow$ Compute an answer set for Π_w		
	with the corresponding rules and weak constraints	violations	
	$\Pi_w \leftarrow \text{Replace the } \mathbf{mMAPF} \text{ constraints in } \Pi_h \text{ relevant for } q$,		
els	Se .		
en			
	(better/worse) solution		
it	Π_h has an answer set X then Display an explanation, presenting an alternative		
	rogram Π		
	\leftarrow Add the relevant hard constraint for q to the mMAPF		
if que	y q is of type QW1–QP5 then		
	some hard constraints due to previous queries		
	pose that Π denotes the mMAPF program, possibly augmented		
Outru	it: An explanation		
input	: a minimpr instance, a plan for this instance, and a query q of type QW1–QU		
Input	: a mMAPF instance, a plan for this instance, and a query q		

55/85

QU Why does not the instance have a solution?

- We replace the relevant MMAPF constraints by violation definitions and weak constraints.
- We identify which constraints are violated.

```
:- plan(A1,T,X), plan(A2,T,X), agent(A1;A2), A1<A2,
X!=intransit.
```

:- plan(A1,T,X), plan(A2,T,X), agent(A1;A2), A1<A2, X!=intransit.

is replaced by the definition:

```
violate_collision(A1,A2,T,X) :- plan(A1,T,X), plan(A2,T,X),
agent(A1;A2), A1<A2, X!=intransit.</pre>
```

▲母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 日 ● の Q @

:- plan(A1,T,X), plan(A2,T,X), agent(A1;A2), A1<A2, X!=intransit.

is replaced by the definition:

violate_collision(A1,A2,T,X) :- plan(A1,T,X), plan(A2,T,X), agent(A1;A2), A1<A2, X!=intransit.</pre>

and the weak constraint:

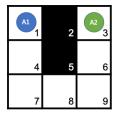
: violate_collision(A1,A2,T,X). [107, A1,A2,T,X,vc]

:- plan(A1,T,X), plan(A2,T,X), agent(A1;A2), A1<A2, X!=intransit.

is replaced by the definition:

violate_collision(A1,A2,T,X) :- plan(A1,T,X), plan(A2,T,X),
agent(A1;A2), A1<A2, X!=intransit.</pre>

and the weak constraint:

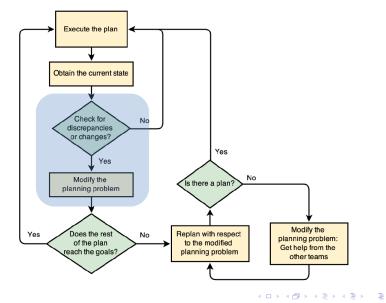

: violate_collision(A1,A2,T,X). [107, A1,A2,T,X,vc]

An example explanation generated about violation of this constraint:

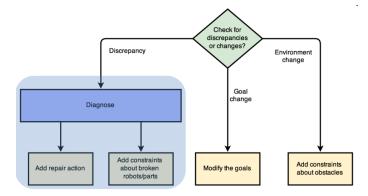
"Robot 1 has to wait at Cell 11; otherwise, Robot 1 and Robot 2 will collide with each other at Cell 7."

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ① ● ○ ● ●

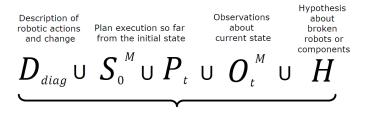
An Example Scenario for QU



- User asks the query QU: "Why does not the instance have a solution?"
- The algorithm displays the following explanation: "There is no solution because Robot 2 collides with the obstacle at Cell 2 at time step 1. We suggest removing this obstacle, if infrastructure change is allowed."


Explanation Generation in Three Applications of ASP

- Generating explanations for complex biomedical queries
- Explanation generation for multi-agent path finding
- Explainable robotic plan execution monitoring


Plan Execution Monitoring

Causal Replanning

(日)

Is the logical theory consistent?

If it is consistent then which actions in P_t could not be executed and why not?

Erdem et al.: Integrating hybrid diagnostic reasoning in plan execution monitoring for cognitive factories with multiple robots. IEEE ICRA 2015. (Best Paper Award Finalist)

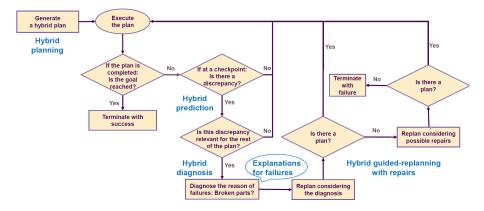
・ロト ・ 四 ト ・ 回 ト ・

æ

Explanation Generation based on Hybrid Diagnosis

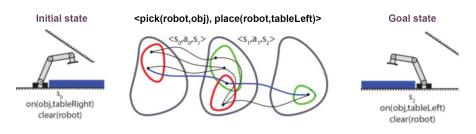
While diagnoses may explain the reasons of relevant discrepancies in terms of broken robotic components, further explanations can be generated to include the actions whose effects have not been observed as expected due to these diagnoses.

Example: A most-probable min-cardinality diagnosis for a relevant discrepancy detected at time step t=3:

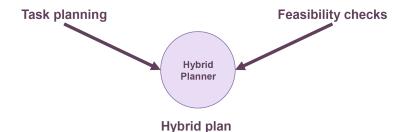

$$X_3 = \{(R_1, Base, 1)\}$$

with further explanations:

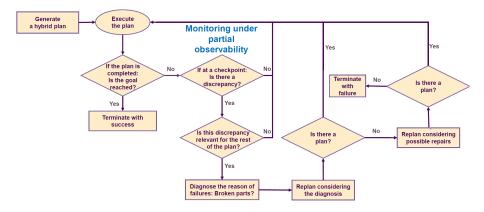
Base of R_1 got broken at time step t=1; so R_1 could not move to the left side of the table at time step t=1 as expected.


Coruhlu et al.: Explainable Robotic Plan Execution Monitoring Under Partial Observability. IEEE Transactions on Robotics 2021.

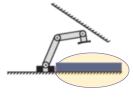
◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶



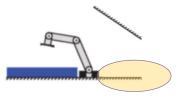
<ロ> <同> <同> < 同> < 同> < 同> <


How can a robot reach a goal state from its initial state in at most k steps without any collisions?

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・



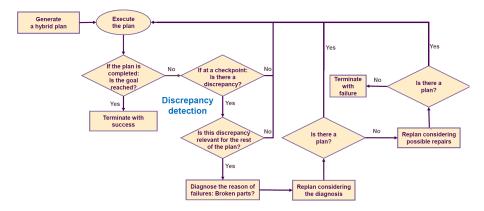
A task plan whose execution is feasible with respect to the feasibility checks.



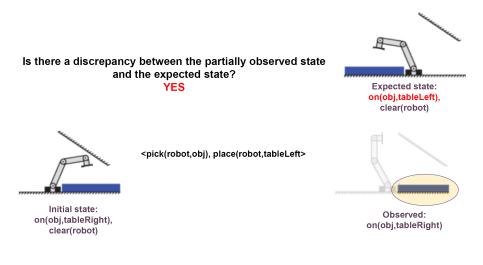
<ロ> <同> <同> < 同> < 同> < 同> <

Only the right side of the table can be observed during plan execution.

Observed: on(obj,tableRight)

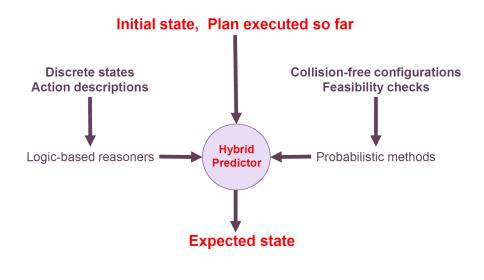


▶ < Ξ > ...

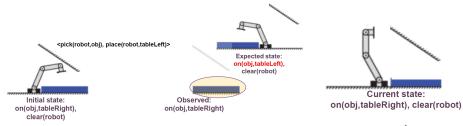

크

Observed:

< 合 ▶



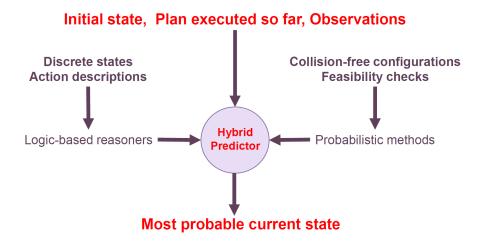
<ロ> <同> <同> < 同> < 同> < 同> <

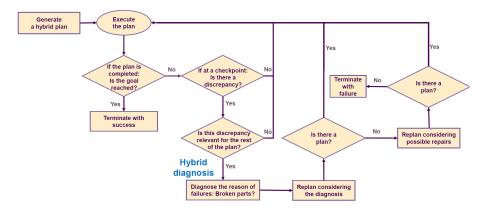

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Hybrid Prediction - Expected State

< 3 >

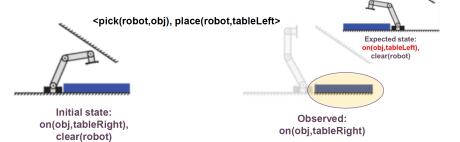
Discrepancy Relevancy


Is this discrepancy relevant for the rest of the plan to reach the goal from the current state? YES

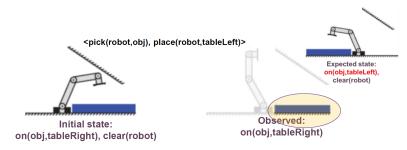


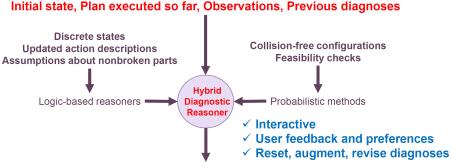
(4) (3) (4) (4) (4)

Image: A matrix

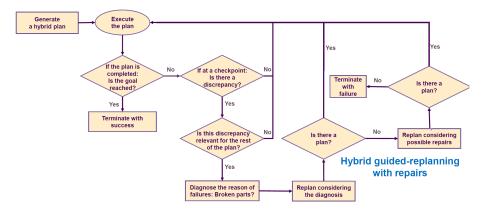

Hybrid Prediction – Current State

<ロ> <同> <同> < 同> < 同> < 同> <


What is the cause of this relevant discrepancy? The manipulator might be broken.

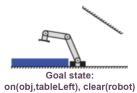


< 17 >

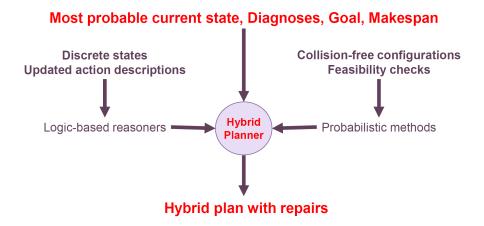

-

Please explain further. What failed during plan execution to cause this relevant discrepancy? As the manipulator is broken, the robot could not pick the object at time step 0.

Most probable minimal diagnosis and explanations



<ロ> <同> <同> < 同> < 同> < 同> <


Given that the manipulator is broken, how can the robot reach the goal from the current state in at most 3 steps?

<repair(robot),pick(robot,obj),place(robot,tableLeft)>

Hybrid Guided Re-Planning with Repairs

Does diagnostic reasoning improve execution monitoring?

Experiments 25 instances with 2 bimanual robots and 10 objects in kitchen domain.

	without diagnosis			with diagnosis		
# Broken parts	# Replannings	Total plan length	Success rate	# Replannings	Total plan length	Success rate
2	8.48	26.44	%80	3.52	17.76	%92
3	14.12	35.96	%72	4.04	22.48	%80

✓ Less number of replannings

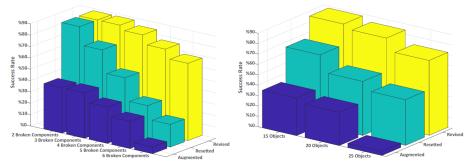
Does diagnostic reasoning improve execution monitoring?

Experiments 25 instances with 2 bimanual robots and 10 objects in kitchen domain.

	without diagnosis			with diagnosis		
# Broken parts	# Replannings	Total plan length	Success rate	# Replannings	Total plan length	Success rate
2	8.48	26.44	%80	3.52	17.76	%92
3	14.12	35.96	%72	4.04	22.48	%80

✓ Less number of replannings✓ Shorter plans

Does diagnostic reasoning improve execution monitoring?


Experiments 25 instances with 2 bimanual robots and 10 objects in kitchen domain.

	without diagnosis			with diagnosis		
# Broken parts	# Replannings	Total plan length	Success rate	# Replannings	Total plan length	Success rate
2	8.48	26.44	%80	3.52	17.76	% 92
3	14.12	35.96	%72	4.04	22.48	%80

✓ Less number of replannings
 ✓ Shorter plans
 ✓ Higher success rate

< 日 > < 回 > < 回 > < 回 > < 回 > <

How does resetting, augmenting, or revising diagnosis improve execution monitoring?

✓ Revising diagnoses improves the success rate.

Conclusions

- Generating explanations for complex biomedical queries
 - Knowledge intensive application, utilizing different resources
 - Query guided explanation generation, based on justifications
 - Explanation trees, shortest explanations, diverse explanations
 - Explanations, augmented with provenance information

Conclusions

- Generating explanations for complex biomedical queries
 - Knowledge intensive application, utilizing different resources
 - Query guided explanation generation, based on justifications
 - Explanation trees, shortest explanations, diverse explanations
 - Explanations, augmented with provenance information
- Explanation generation for multi-agent path finding
 - Combinatorial search problem with many variants
 - Query guided explanation generation, based on hypothetical reasoning, counterfactuals, hard/weak constraints
 - Explanations about properties of solutions (e.g., optimality), augmented with alternative solutions
 - Explanations about nonexistence solutions, augmented with suggestions

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶ ― 国

Conclusions

- Generating explanations for complex biomedical queries
 - Knowledge intensive application, utilizing different resources
 - <u>Query guided</u> explanation generation, based on justifications
 - Explanation trees, shortest explanations, diverse explanations
 - Explanations, augmented with provenance information
- Explanation generation for multi-agent path finding
 - Combinatorial search problem with many variants
 - Query guided explanation generation, based on hypothetical reasoning, counterfactuals, hard/weak constraints
 - Explanations about properties of solutions (e.g., optimality), augmented with alternative solutions
 - Explanations about nonexistence solutions, augmented with suggestions
- Explainable robotic plan execution monitoring
 - Hybrid reasoning about actions and change
 - Interactive explanations based on diagnostic reasoning
 - Most probable explanations about broken components, augmented with actions