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Definitions

What exactly is Artificial Intelligence (Al)?

Artificial intelligence is software for processing structured or unstructured data with four characteristics:
1) it works autonomously, i.e. without direct user control,

2) its results are statistical, i.e. it does not combine cause and effect,

3) it is adaptive, i.e. it adjusts its behaviour as it learns more about the context; and

4) it is interactive, i.e. it influences our social and physical environment and vice versa.

h | hm? Dignum et al. 2020, HLEG 2019
What is an algorithm?

An algorithm is like a recipe, i.e. a prescription for a logical sequence of steps for organising, processing and
analysing large amounts of data. Algorithms are the result of modelling, which includes both the formalisation of a
problem and a goal.

What are Automated (Algorithmic) Decision Systems (ADS)?
We speak of automated or algorithmic decision systems when algorithms execute decision models and human
judgement is replaced in whole or in part by the system.
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Anatomy of ADS

Algorithms are the result of modelling, which
includes both the formalisation of a problem
and a goal:

Which parameters are relevant for the
decision?

How can these criteria be operationalised?

Which data are relevant?

Objective: What specifically is to be
optimised? How can this be measured?
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Cognitive abllities
of
Al systems:

hink?
Understand?
Judge?

" Or Searl's Chinese Room (1999):
- Al systems are defined purely formally or syntactically (application of
rules/algorithms)

SlmUIate’) - Thinking/understanding/judging/feeling (...) requires consciousness
P, and intentionality
CaICL”ate j - Al systems do not think/understand/judge/feel (...), but process and
simulate
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ADS are socio-technical ensembles

https://www.queensu.ca/artsci_online/courses/principles-of-psychology
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The term "artificial intelligence"
obscures the fact that cultural, social
and political values are incorporated
into algorithms through the
designers' decisions about how to
operationalise certain activities, goals
or parameters in a model!



Reasons for using A

Reduction of
decision alternatives
through pre-

selection, e.g.
recommender
systems, spam
filters, etc

Reductionof
uncertainty through |
predictione.g. =
predictive analytics
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Challenges (1):
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Example: ADS in recruiting

Expectations

- Management of the alternative space (more
suitable candidates and less unsuitable

candidates)

- Increasing objectivity

through operationalisation of decision criteria,
reduction of bias and increase of fairness

- Increasing the forecasting quality of future
performance based on big data (person-job fit)

- Increasing effectiveness through
Person-Organisation Fit & Retention
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Cognitive Bias

We store memories differently based
on how they were experienced

We reduce events and lists
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Exemplary ADS applications in recruiting

Analysis of data from social media to pre-select
suitable candidates according to qualifications,
values, salary expectations, etc.

Analysis of application videos and texts for selection
into the shortlist

Analysis of visual material and videos to determine
so-called "inner states" such as emotions,
motivation, honesty...

Analysis of behaviour in serious games to predict
future performance behaviour
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Performance of ADS lags far behind expectations
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A recent analysis of 133 Al
systems from different
industries in Europe shows
that every second system
has a gender bias and every
fourth system has both a
gender & a racial bias

Source: Smith et al. 2021



Bias in Algorithmic Systems
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Challenges (2): Social

Eli Pariser 2011: The Filter Bubblei
What the Internet Is Hiding from You

"... First your identity shap'éé':f‘;zqq_p;medla
(social media), and then they shape what you
believe and what matters to you."

nineering &

-
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Sho hanna boff (2018+ S.335):
Suﬁ? illance ( 'apltallsm

‘~ =5 "The real p@,\@rof ‘profiling” user data

is tdgh‘ahge pec)pie s behaviour in the
reai’fworld Smator e
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Challenges (3)
Changing Workers'.
Skills i

-~
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Role Perception

COMPUTER SAYS NO!

(c) Sabine Koszegi / TU Vienna



Who makes the decision?

Worker . Client/Citizen/Patient




Who makes the decision?

Worker

Client/Citizen/Patient




Challenge (4)
Diffusion of Accountabill

-

-
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Ironies of Automation

The goal of automation is to replace (unreliable and inefficient) human operators with machines; humans are left with

two tasks: Monitoring and intervening in case of an error/problem.

ﬁesign error
lrony 1:

Design flaw: only those tasks
that can be easily automated
are automated!

\

~

/

(Lisanne Bainbride, 1986)

mnual & \

Cognitive
(Control) skills

Irony 2:

Humans are supposed to step in
during crises and take over tasks
from machines, but skills and
knowledge are lost if they are

not used regularly! /

@”‘“’””g @\

L1

lrony 3:

Humans are supposed to
supervise those machines that
have been set up because they

can (supposedly) do the job

better than humans!

N
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Human Agency and Oversight Requires XAl
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Human Judgment:

goals, norms, rules,

constraints,
contextual
knowledge, ...

Human Judgment:
goals, norms, rules,
constraints,
contextual
knowledge, ...

Human Values
ethics, law, social
norms, cultural
values, wellbeing,
sustainabiltiy,...

Intervention

Output

Monitoring

Output

Expectations

Output

Autonomous
System:
algorithms,
statistical models,
utility fuctions,
sensors, data

Autonomous
System:
algorithms,
statistical models,
utility fuctions,
sensors, data

Autonomous
System:
algorithms,
statistical models,
utility fuctions,
sensors, data
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Reqguirements
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Privacy and
data
governance

Process

Technical
robustness and
safety

==
Transparency
(incl. XAI)
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Human
agency and
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Accountability

L2

Diversity, non-
discrimination &
fairness

Societal &

environmental
well-being




HUMAN RIGHTS & RISK ASSESSMENT

UNACCEPTABLE RISK

Examples include social scoring by
governments, exploitation of vulnerabilities of
children and use of subliminal techniques

HIGH RISK

Examples include predictive policing,
recruiting, facial recognition, etc.
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LIMITED RISK

(Al systems with specific
transparency obligations)

Examples include chatbots,
etc.

MINIMAL RISK
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